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The Potential of Cognitive Circles to Measure Mental Load
Anonymous Author(s)

Abstract
In Human-Computer Interaction, Usability, and Interaction Design,
obtaining objective measures of mental workload is desirable yet
challenging, as current methods are either costly and intrusive or
subjective and unreliable. To overcome these limitations, we devised
Cognitive Circles, a technique that estimates workload by analyz-
ing the kinematic properties of circular traces drawn on a tablet
as people simultaneously perform cognitively demanding tasks
of different types (arithmetic, reading, and spatial reasoning). We
investigate the feasibility of this approach and lay the foundations
for establishing its viability through a controlled experiment that
addresses two questions: (A) Do participants’ traces reliably encode
information to predict the tasks’ difficulty? and (B) Do predictive
patterns generalize across tasks in different cognitive activities? Our
results show that Cognitive Circles can predict task difficulty with
accuracies reaching up to 94%, capturing meaningful signatures of
mental workload (A). Prediction performance, however, varies sub-
stantially across task types (B), suggesting that each task domain
induces people to exhibit distinct kinematic patterns. These find-
ings highlight Cognitive Circles as a promising low-cost approach
to workload assessment and point to its potential for informing
adaptive HCI and the design of cognitively aware systems.

CCS Concepts
•Human-centered computing→ Empirical studies in HCI;
User studies.

Keywords
Mental Load Estimation, Mental Load Prediction, Cognitive Load
ACM Reference Format:
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1 Introduction
Mental load is a fundamental construct in Cognitive Ergonomics
and Human-computer Interaction (HCI). For instance, understand-
ing the mental load associated with specific tasks and interfaces
can help researchers compare alternative designs and, eventually,
achieve more effective interfaces that do not overload users.

However, mental load is notoriously difficult to assess for three
main reasons. First, it is a conceptually muddled construct, with
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variants such as mental workload, cognitive workload, and cogni-
tive load—each meaning slightly different things across commu-
nities [46]. Second, mental load is most often measured by asking
participants how easy or difficult a task was to complete or how
difficult the interface was to use. This is achieved through subjective
assessments that are noisy and can interrupt the task [31]. Third,
existing objective measurement methods (e.g., EEG [25], oxygena-
tion/blood flow detection [28]) tend to be expensive, intrusive, and
cumbersome to use by designers and researchers.

In this paper, we propose Cognitive Circles, a technique for ob-
jectively measuring mental load without the cost and difficulty of
other alternatives. The idea is simple: while users carry out a pri-
mary task, whose mental load we want to measure, they also trace
circles on a tablet. The traces collected are processed and analyzed
by machine learning algorithms able to differentiate between traces
from trials with high and low mental load.

To determine the feasibility of the proposed technique, we must
first address the following two questions: A) Do touch traces carried
out during a task contain information about the difficulty of the
task?; and B) Do traces from different types of tasks (e.g., arithmetic
vs. language-based) share the same patterns that differentiate be-
tween easy and difficult instances of each task type? Answering the
first question is important because it determines whether the main
principle underpinning Cognitive Circles is supported by evidence.
Answering the second question would tell us whether a generic
dataset of circle traces labeled by difficulty is sufficient for general
applications or whether task-specific datasets are required.

We carried out an experiment with 48 participants to answer the
questions above. Participants completed easy and difficult tasks of
three different types: arithmetic calculations, a reading/linguistic
task, and logical sequence puzzles. The results are encouraging: the
accuracy of differentiating difficult from easy tasks on a test set of
8 participants (48 tasks) was 75%, suggesting that the response to
question A is positive. We also found that the model’s performance
varies across tasks (reaching 94% for sequential reasoning tasks)
and that training the model on one task is as efficient as training the
model on all tasks, suggesting that different tasks show different
intrinsic patterns (question B). Our contributions are therefore:
• Cognitive Circles, a novel way to measure mental load and task

difficulty;
• An experiment that validates the technique’s potential and offers

insights into how to develop it for testing different tasks.
While Cognitive Circles is still in its early stages, our findings

lay the groundwork for its development as an experimental tool.
They offer guidance on data collection, model training, and design
considerations, moving us closer to a non-intrusive and inexpensive
method for objective assessment of mental load and task difficulty.

2 Background and Related Work
There are many different terms to refer to concepts related to men-
tal load. These differ in subtle ways, including the underlying as-
sumptions, their theoretical underpinnings, and the researcher’s
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background. This multiplicity and subtlety often leads to misuse
of the terms [22, 46] and, we believe, constitutes an obstacle to the
effective use of the mental load as a conceptual and empirical tool.

The term mental load is preferred in the human factors domain,
where it has a long history [40]. Most conceptualizations of mental
load emerge from a systems/computational view of human cog-
nition where the human is modeled as an information processor
that has limited capacity and that experiences different levels of
load as it carries out different tasks (e.g., [45]). In turn, different
mental load levels result in different performances or outcomes of
the processing [13, 33]. Performance and load are often associated
in non-linear ways (e.g., performance may initially increase with
load but then severely decline after capacity has been exceeded).
Capacity is sometimes equated to memory at the lowest level of
cognitive analysis [36], but it might include cognitive resources
such as attention. Sometimes load is used to try to discern the cog-
nitive architecture of the brain, such as whether there are different
units that process different types of information or whether there
are parallel or sequential processors [18].

Cognitive load is the term preferred in education, where the
prominent Cognitive Load Theory [3] posits that learning tasks are
only possible when there is sufficient human cognitive capacity to
support the intrinsic load generated by the task, the extraneous
load generated by the way in which the task is presented, and the
task of learning itself (germane load) [21]. In this area, cognitive
workload is usually defined more abstractly and, unfortunately,
there is no consensus regarding how to separate its different com-
ponents effectively [21], or about whether these three components
are distinguishable or even explanatory [17].

Despite the difficulties navigating the conceptual landscape (some
researchers consider this exercise moot [40]), it is clearly desirable
to know whether a human is under heavy or light mental load,
among other reasons, to be able to allocate tasks according to capac-
ity dynamically (reducing the possibility of overload), to compare
the difficulty of tasks, to compare the capacity of individuals, or
to compare the benefits of using different tools or representations
for carrying out the same task [22]. With these strong motivations,
it is unsurprising that much effort has gone into studying and de-
veloping ways to measure cognitive or mental load or workload,
although it is often not clear what is the correspondence between
a measurement and the theoretical construct [40, 46].

In this paper, we purposefully remain agnostic about the theo-
retical background and use the term mental load because we find it
suitably general and less associated with a specific theory. Also, we
propose Cognitive Circles as a new way to measure mental load but
do not yet posit or hypothesize the mechanisms or cognitive user
models that underpin the phenomena captured by the technique.

2.1 Mental Load Measurements
Several surveys provide categorizations and characterizations of
mental/cognitive load measurements (e.g., [4, 7, 22, 23, 34]). The
most basic measurement is performance itself (usually completion
time and error rates); however, these measurements provide limited
insight into the reasons or origins of the load and do not differentiate
mental load from other factors that could also affect performance.

Many surveys acknowledge subjective user questionnaires (e.g.,
SMEQ [51], NASA-TLX [10, 11]) as the most common method to
ascertain load, but they also highlight their shortcomings, namely
the need to interrupt the task or wait till its end to measure and
the problems associated to it being self-reported (e.g., unstable,
relative, prone to memory distortions). Alternative approaches,
like the instantaneous self-assessment (ISA) [43], have attempted to
address these concerns by reducing the time and cognitive overhead
involved.

On the other hand, objective measurements include a large
number of bodily signals, including cardiovascular (such as heart
rate, ECG and heart rate variability [9]), brain-based (EEG [25],
fMRI [41], fNIRS [28]), respiration [14], skin electrical and temper-
ature changes [32], and eye-based [24] (gaze movement and pupil
size). All these objective measurements require expensive, special-
ized sensors with different degrees of intrusiveness: from wearing
a bracelet or a ring (e.g., to capture heart rate and galvanic skin
response) to lying down in a constrained space (e.g., in a magnetic
resonance imaging machine).

Another class of objective methods, more closely related to the
approach we propose in this paper, is often referred to as behavioral
measurements, which provide quantifiable data based on observable
actions rather than physiological signals. For instance, research has
tried to infer cognitive load from prosodic features of speech, such
as pauses and speech rate [19, 44, 47]. Of particular interest to us
are the works of Ruiz et al. [4, 35–37], who analyzed pen strokes
in a range of tasks to infer the load that they impose, Luria and
Rosenblum [27] and Yu et al. [49, 50], who focus on the handwriting
signal, and Mock et al. [30], who analyze touch signals.

While behavioral methods offer a less intrusive alternative to
physiological measurements, they are often highly tied to the na-
ture of the task, making load inferences less reliable when user
interaction is minimal (e.g., tasks involving few pen strokes). In ad-
dition, certain tasks demand more frequent or faster inputs, which
may appear to reflect a higher mental load even when they do not.
Our goal is to develop a measurement technique that is relatively
insensitive to the content of the primary task, though not entirely
task-agnostic (i.e., as explained in question B in the Introduction,
different tasks such as reading, or arithmetic might require their
own training). Ideally, by consistently performing the same sec-
ondary motor task (tracing circles on a tablet), we could obtain
stable and comparable measurements across at least tasks with
different contents. However, the trade-off of requiring a secondary
task is that, while relatively unobtrusive, it may limit the tech-
nique’s applicability in situations where two hands are needed for
the primary task (see also Section 6.4 in the Discussion).

2.2 Mental Load and Motor Behavior
Prior research has consistently demonstrated that increased mental
load can significantly affect motor performance through changes in
kinematics and neuromuscular control (e.g., [20, 26, 39, 52]). This
empirical evidence shows that when people are concurrently sub-
ject to cognitive and physical demands, they tend to simplify move-
ment patterns, reduce motor precision and smoothness, increase
movement variability, and allocate attentional resources differently,
typically prioritizing one task at the expense of the other [1, 48].
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Figure 1: Experimental setup. Stimuli for the primary task appear on a monitor (a); participants trace circles on a tablet (b). The
experimenter manages the experiment with a laptop (c). The circular traces become invisible after an initial period (d).

Herrebrøden et al. [12] found that solving arithmetic problems
while using a rowing ergometer significantly reduced movement
complexity, leading athletes—even elite rowers—to regress to sim-
pler, less coordinated motor patterns. Similarly, DiDomenico and
Nussbaum identified that the increase in various forms of physi-
cal activity generally resulted in diminished performance during
arithmetic tasks [6].

The rationale behind Cognitive Circles builds upon these find-
ings. We hypothesize that motor outputs during a continuous task
(tracing circles) can serve as sensitive indicators of mental load.

3 Experiment
To assess the Cognitive Circles technique’s potential to detect task
difficulty and therefore mental load, we carried out a controlled
empirical study. The main goal was to answer two questions: A) Do
touch traces carried out during a task contain information about
the difficulty of the task?; and B) Do traces from different types of
tasks (e.g., arithmetic vs. language-based) share the same patterns
that differentiate between easy and difficult performances?

3.1 Participants
We recruited participants from a local university in two phases.
Group A consisted of 40 people (18 females, 22 males, 18–32 years
old, mean age 22, median 21, 2 left-handed), and Group B consisted
of 8 participants (3 females, 5 males, 21–33 years old, mean and
median 26, 1 left-handed). Group B’s data was exclusively used
for testing, hence we did not use it for any training or model hy-
perparameter tuning. The demographic makeup, self-assessment
of problem-solving and arithmetic skills, as well as the reading
habits of both participant groups, are depicted in Figure 1 of the
supplementary materials document.

3.2 Tasks, Apparatus and Procedure
The experiment’s trials consisted of participants carrying out the
secondary task, i.e., tracing circles on a tablet horizontally placed
on the table, at the same time that they completed one of three
possible primary tasks on an 18-inch vertical monitor in front (see
Figure 1.a). Each trial lasted two minutes. For the secondary task
participants were instructed to use their index finger of their domi-
nant hand to continuously trace circles on a blank tablet, without
specific instructions on the features of the circles (e.g., size, center,
drawing direction). At the start of each trial, participants traced
circles for five seconds, after which an auditory cue prompted them

to begin the primary task on the main monitor (see Figure 1.a). At
the beginning of the trial, touches left visible traces on the tablet;
after 15 seconds they disappeared to avoid distraction.

We selected a set of three primary tasks based on three criteria:
A) trials should represent a variety of different cognitive tasks
involving different cognitive systems; B) it should be easy to design
instances of the task that are easy and difficult, and; C) tasks should
be familiar to participants. These criteria support a selection of
tasks helpful to answer the two main questions of the study at
this early stage of the development of the technique. The selected
primary tasks were arithmetic, spatial reasoning, and reading.

Arithmetic task: Each trial consisted of 45 arithmetic compar-
isons (e.g., “3 + 6 is smaller than 1”) displayed in a 9x5 grid. Par-
ticipants had to count the number of true comparative statements
within the set of 45 and report that number verbally at the end of the
two minutes. The easy arithmetic tasks compared a small number
against the outcome of an addition or a subtraction, whereas diffi-
cult arithmetic tasks compared two operations with larger numbers
that could include multiplication and division (Figure 2(a)).

Spatial reasoning task: Each trial consisted of 45 graphical
sequences of four figures, each similar to one of Raven’s Progres-
sive Matrices [2, 16]. Participants counted and verbally reported
to the experimenter the number of sequences in which the fourth
figure was logically consistent with the progression (i.e., correct).
Easy tasks involved few elements and basic transformations (rota-
tions or mirroring), whereas the difficult transformations featured
more intricate objects with combinations of transformations (e.g.,
simultaneous mirroring and figure splitting—see Figure 2(b)).

Reading task: A brief short story1 appeared on screen. In the
easy version of the task participants had to count simple grammati-
cal elements (e.g., “How many punctuation marks are there in the
following text?”), whereas the difficult version required deeper lin-
guistic analysis (e.g., “How many masculine plural adjectives appear
in the following text?”—see Figure 2(c)).

After each trial, participants ranked the task difficulty on a 7-
point Likert scale, and as a binary assessment (easy/difficult). The
experiment lasted approximately 60 minutes. Participants received
an introduction, signed consent, completed a demographic ques-
tionnaire and received an explanation of all tasks types. Then they
familiarized themselves with the circle tracing task on the tablet
(2 minutes). The bulk of the experiment consisted of carrying out

1The original text was presented to participants in Spanish, as they were all Spanish
speakers. All experimental materials have been translated for this submission

3
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(b) Spatial reasoning

Text (excerpt)
A story is a short narrative created by one or more authors, based on real or �ctional 
events, whose plot is carried out by a small group of characters and with a simple plot. 
The story is shared both orally and in writing; Although at �rst, the most common was by 
oral tradition.

Furthermore, it can account for real or fantastic events, but always on the basis of being 
an act of �ction, or a mixture of �ction with real events and characters. It usually contains 
several characters who participate in a single central action, and there are those who 
believe that a shocking ending is an essential requirement of this genre. Its goal is to 

Easy

Difficult
1

2

How many singular feminine nouns are there in the following text?

How many masculine plural adjectives are there in the following text?

1

2 How many words in the following text contain the letter 'p' or 'P'?

How many punctuation marks are there in the following text?

(c) Reading

Figure 2: Task examples by type and difficulty level.

an easy and difficult trial of each of the three task types. Task type
order was counterbalanced across participants and within each task
type, the easy and difficult task appeared in any order. Participants
were asked to prioritize correctness over speed, and reported out-
comes at the end of the twominutes, regardless of whether they had
completed all the trial’s subtasks. They also had to verbally report
how far they got in the list of subtasks: for arithmetic and spatial
reasoning tasks this meant reporting the number in the subtask
label, and for the reading task, reporting the last word they read.

3.3 Data Collection, Augmentation, and
Pre-processing

We collected 4 main types of data: A) demographic information;
B) participant subjective estimations of each trial’s difficulty in
two forms, a binary response (easy vs. difficult), and as a 7-point
Likert scale; C) the participant response to the task (task counts and
progress—see Section 3.2), and; D) the traces of the cognitive circles.
For each participant, we computed their average Likert difficulty
score and subtracted it from all their reported scores to account for
individual rating differences. Our preliminary tests confirmed that
this signal is less noisy than the raw Likert difficulty score and it is
the one we used for our analyses.

Each trace is a bi-variate time series (a timestamped list of 𝑥 and
𝑦 coordinates). Because the sampling rate of touch points in a tablet
is irregular, we resampled the original signals to achieve a uniform
frequency of 66.6 Hz using linear interpolation.2 The resampling
ensured consistent temporal resolution while preserving the spatial
characteristics of the original trace. From the 𝑥 and 𝑦 coordinates,
we derived additional channels (features): linear velocity, linear
acceleration, radius (distance of the point to a reference point or
center), radial velocity, and angular velocity. The details of the
derived features and the resampling are available in Section 2 of the
supplementary materials. The final analyzed augmented cognitive
circles data consisted of 7 channels with 7874 data points each.

4 Predictive Pipelines and Analysis
To answer our research questions, we first needed to find out
whether it would be possible to predict the difficulty of the task
using the trace data. Difficulty in our study can mean one of two
things. The designed difficulty is one of the two levels of difficulty—
easy or difficult—with which a trial was created (see Section 3.2).
The perceived difficulty is an assessment that participants completed
after each trial and had two forms: a binary (easy vs. difficult) judg-
ment and a 7-point Likert-scale (see Section 3.3).

Our approach was to try a wide range of machine-learning tech-
niques. The degree to which the best of the techniques predicts
either the designed difficulty or the perceived difficulty provides us
with a lower bound of how useful the participants’ traces can be for
workload prediction. While it is beyond the scope of this work to
provide a comprehensive survey of all possible learning algorithms,
we selected a diverse range of combinations of data representations
and model types expected to perform well with this type of data.

2We used the DataFrame.interpolate https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.interpolate.html method from the Pandas Python library.
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4.1 Data Representations
We selected data representations based on the literature and our
experience designing, training, and evaluating learning pipelines.

Plain time series: This representation corresponds to the raw
data consisting of seven channels: the original 𝑥 and 𝑦 coordinates
and the five additional channels derived from them (linear velocity,
linear acceleration, radius, radial velocity, and angular velocity), as
described in Section 3.3.

Channel means representation:We can model a trace as a set
of seven average values, one per channel in the plain time series.
The main advantage of this representation is that the resulting
features are interpretable (they correspond to averages of the traces’
movement properties).

MiniROCKET features:We also used the output of applying
theMiniROCKET algorithm [5], a state-of-the-art approach to learn-
ing feature maps, to the seven channels of the plain time series.
MiniROCKET applies a set of random convolutional kernels to the
data. The results, after pooling, provide a latent representation of
the time series that can be sent as input to any state-of-the-art clas-
sifier or regressor. Contrary to the channel means representation,
the MiniROCKET representation is not interpretable.

Trace Plots (VLAIR): These are 2D visual representations of
the traces (bitmaps), generated from the time series. The visuals
encode the touch points as constant-sized circles, and the circles
are connected by straight lines colored on a gradient according to
their instantaneous linear velocity (see Figure 3). Inspired by the
VLAIR approach [15], this representation is meant to be accessible
to humans and to computer vision models (see Section 4.2 below).
The visual mapping was chosen iteratively, testing on a validation
set taken from the training set (never on the testing set).

4.2 Models
The models that we can train are dependent on the representation
and the labels that we predict. For the plain time series with binary
labels we train an LSTM model with one layer, 20 (designed diffi-
culty) or 10 (reported difficulty) hidden states, and dropout rates
of 0.2 (designed) and 0.1 (reported). For the channel means and
MiniROCKET feature representations we trained random forest
classifiers with 100 tree estimators. For the trace plots (VLAIR), we
employed a CNN classifier based on MobileNetV2 [38] augmented

(a) Easy task (b) Difficult task (c) Linear Velocity

Figure 3: Traces made by a participant during the easy (a) and
difficult (b) arithmetic tasks. Color encodes linear velocity
normalized using min-max scaling to a [0, 1] range (c).

with two additional fully connected layers. All models were trained
on the training set data (40 participants, 240 traces in total).

To predict the Likert-reported difficulty, we used the channel
means and MiniROCKET representations to train a random forest
regressor and a pattern-based linear regressor using the HiPaR [8]
algorithm. HiPaR first learns a baseline linear model on the entire
dataset, whose predictions can be improved via a set of local linear
models defined on subsets of the data. Those subsets are charac-
terized by conditions on the input features, e.g., (velocity > 0.5 or
task = arithmetic). Local models are learned only if they can help
improve the performance of the baseline linear model. The details
of the models and data representations, as well as the code, are in
Section 4 of the Supplementary Materials.

5 Results
Weused the pipelines described above to carry outmultiple analyses
that would allow us to address the two main questions of our study.

5.1 Do touch traces contain information about
the primary task’s difficulty?

The three leftmost numerical columns of Table 1 show a sum-
mary of the performance of different pairs of representation and
model on the binary (easy vs. difficult) labels. The best-performing
pipelines used the Random Forest (RF) classifier on the channel
means and MiniROCKET representations, both with 0.75 accuracy.
Performance is generally comparable across pipelines, with the

Table 1: Prediction performance of cognitive circles for the designed and perceived difficulty of the tasks in the test set
(8-participant cohort). The table shows the results with and without including the task types as input feature.

Difficulty Classifier Cognitive Circles Cognitive Circles + Task Type

Accuracy F1 - difficult F1 - easy Accuracy F1 - difficult F1 - easy

Designed

RF on channel means 0.75 0.75 0.75 0.75 0.75 0.75
RF on MiniROCKET 0.75 0.75 0.75 0.75 0.75 0.75
LSTM on orig. series 0.75 0.75 0.75 0.75 0.75 0.75

MobileNetV2 on raster images 0.71 0.73 0.68 0.73 0.78 0.67

Reported

RF on channel means 0.69 0.75 0.59 0.71 0.77 0.61
RF on MiniROCKET 0.69 0.75 0.59 0.69 0.75 0.59
LSTM on orig. series 0.65 0.70 0.56 0.69 0.72 0.65

MobileNetV2 on raster images 0.63 0.75 0.25 0.63 0.73 0.40
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Table 2: Ranking of features using the permutation feature importance score of the random forest classifiers trained on the
channel means representation for predicting difficulty and task type.

Designed difficulty Perceived difficulty Task type

Feature Importance (std) Feature Importance (std) Feature Importance (std)

𝐴𝑛𝑔. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.107 (0.098) 𝐴𝑛𝑔. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.049 (0.050) 𝐿𝑖𝑛. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.099 (0.032)
𝑋 𝑐𝑜𝑜𝑟𝑑 0.086 (0.035) 𝑅𝑎𝑑𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.024 (0.026) 𝑅𝑎𝑑𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.068 (0.037)

𝑅𝑎𝑑𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.079 (0.037) 𝑋 𝑐𝑜𝑜𝑟𝑑 0.017 (0.021) 𝐴𝑛𝑔. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.061 (0.031)
𝐿𝑖𝑛. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.066 (0.053) 𝐿𝑖𝑛. 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 -0.007 (0.023) 𝑌 𝑐𝑜𝑜𝑟𝑑 0.051 (0.031)

𝑅𝑎𝑑𝑖𝑢𝑠 0.037 (0.039) 𝑅𝑎𝑑𝑖𝑢𝑠 -0.009 (0.024) 𝑋 𝑐𝑜𝑜𝑟𝑑 0.028 (0.025)
𝐿𝑖𝑛. 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 0.035 (0.038) 𝑌 𝑐𝑜𝑜𝑟𝑑 -0.011 (0.030) 𝑅𝑎𝑑𝑖𝑢𝑠 0.020 (0.030)

𝑌 𝑐𝑜𝑜𝑟𝑑 0.033 (0.055) 𝐿𝑖𝑛. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 -0.016 (0.032) 𝐿𝑖𝑛. 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 0.008 (0.023)

VLAIR approach exhibiting a small disadvantage (likely due to its
encoding of only three of the seven available channels—𝑥 , 𝑦, and
linear velocity). In all prediction settings, accuracy was above 50%,
which demonstrates that the traces do contain information about
both the designed difficulty of the task and the perceived difficulty;
however, all pipelines are better at predicting designed difficulty
than perceived difficulty (see also Section 6).

The pipeline with random forests on the channel means allows
us to measure the importance of the different features (channels)
for the sake of interpretability. The two leftmost columns in Table 2
show the rank of features calculated using permutation importance
(damage to prediction accuracy when noise is added to a feature by
permuting values across rows). Angular velocity, the X coordinate
and radial velocity are the top three features for predicting both
designed and perceived difficulty (although in different orders).

Table 3: Performance predicting Likert reported difficulty
using and omitting the task type as input feature (R2).

Method Without Task Type With Task Type

RF regressor on MiniROCKET 0.11 0.29
RF regressor on Channel means 0.12 0.38

HiPaR on MiniROCKET 0.02 0.32
HiPaR on Channel means -0.008 0.54

The results from the regressors, which predict the 7-point scale of
perceived difficulty (left column of Table 3) show that the random
forest regressor on the channel means and MiniROCKET repre-
sentations could explain some of the variance (R2 test scores of

0.12 and 0.11, respectively), whereas the HiPaR regressor’s perfor-
mance is almost negligible on both representations (R2 of 0.02 on
MiniROCKET and −0.008 on the channel means).

5.2 Do traces from different task types share
patterns differentiating trial difficulty?

To answer this question we disaggregate the performance of the
classifiers by task type (Table 4). Cognitive circles are best for pre-
dicting designed difficulty in spatial reasoning tasks and worst for
reading tasks. The differences in accuracy between tasks are sub-
stantial and consistent across all classifiers and data representations.
For the binary reported difficulty, the classifiers tend to perform
worse at detecting easy tasks, more evidently in reading and spatial
reasoning tasks due to class imbalance (e.g., 28 out of 40 spatial tasks
were perceived as difficult), and despite taking the imbalance into
account when training the classifiers. Learning individual difficulty
classifiers on the traces of each task type led to lower accuracy for
the random forest on the channel means pipeline and very similar
performance for the random forest on MiniROCKET (the numbers
between parentheses in the leftmost numerical column of Table 4).

In a further set of analyses, we compared the prediction perfor-
mance of all pipelines with a version where an additional feature
encoded which task a trial corresponds to. The results (in the right-
most columns of Table 1) indicate that including the task type does
not significantly enhance the prediction of designed difficulty, and
provides only minimal benefit for reported difficulty. The disag-
gregation of the performance of these task-aware classifiers (in
Table 5) shows a very similar picture: explicitly marking the task

Table 4: Prediction performance of different classifiers when using the cognitive circles as input for predicting the designed
and binary perceived difficulties on the three types of tasks. The accuracy scores in parentheses correspond to the performance
of a classifier trained exclusively on the traces of that particular task type.

Difficulty Task RF on channel Means RF on MiniROCKET LSTM on orig. series MobileNetV2 on images

Acc F1 (d) F1 (e) Acc F1 (d) F1 (e) Acc F1 (d) F1 (e) Acc F1 (d) F1 (e)

Designed
Arithmetic 0.75 (0.63) 0.75 0.75 0.75 (0.75) 0.75 0.75 0.69 0.71 0.67 0.69 0.74 0.61
Reading 0.63 (0.56) 0.63 0.63 0.63 (0.63) 0.63 0.63 0.69 0.67 0.71 0.50 0.50 0.50

Spatial Rsn. 0.88 (0.88) 0.88 0.88 0.88 (0.88) 0.88 0.88 0.88 0.88 0.88 0.94 0.94 0.93

Reported
Arithmetic 0.63 (0.56) 0.57 0.67 0.63 (0.63) 0.57 0.67 0.63 0.57 0.67 0.50 0.64 0.20
Reading 0.56 (0.44) 0.59 0.53 0.56 (0.50) 0.59 0.53 0.50 0.50 0.50 0.63 0.75 0.25

Spatial Rsn. 0.88 (0.88) 0.93 0.50 0.88 (0.88) 0.93 0.50 0.81 0.89 0.40 0.75 0.85 0.33
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Table 5: Prediction performance of different classifiers when using the cognitive circles and the task type as input for predicting
the designed and binary perceived difficulties on the three types of tasks.

Difficulty Task RF on Channel Means RF on MiniROCKET LSTM on orig. series MobileNetV2 on images

Acc F1 (d) F1 (e) Acc F1 (d) F1 (e) Acc F1 (d) F1 (e) Acc F1 (d) F1 (e)

Designed
Arithmetic 0.75 0.75 0.75 0.75 0.75 0.75 0.69 0.71 0.67 0.93 0.74 0.62
Reading 0.63 0.63 0.63 0.63 0.63 0.63 0.69 0.67 0.71 0.63 0.70 0.50

Spatial Rsn. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.89 0.86

Reported
Arithmetic 0.63 0.57 0.67 0.63 0.57 0.67 0.56 0.22 0.70 0.56 0.63 0.46
Reading 0.56 0.59 0.53 0.56 0.59 0.53 0.56 0.53 0.59 0.56 0.67 0.37

Spatial Rsn. 0.94 0.97 0.67 0.88 0.93 0.50 0.94 0.97 0.67 0.75 0.85 0.33

type in the data produces better results only for some tasks, e.g.,
an increase of 6 points for the random forests on channel means
for the spatial reasoning task (compare Tables 4 and 5).

A similar analysis approach but on the Likert scale ratings shows
that most regressors’ accuracies are boosted when we encode task
type in the data (see Table 3). The increase is most dramatic for the
HiPaR pipeline on the channel means representation, which goes
from an 𝑅2 of -0.008 without task type information to 0.54.

We conducted a complementary analysis to predict the task type
from the circle traces rather than its difficulty level. Table 6 shows
the performance for the random forest approaches trained on the
channels means and MiniROCKET representations, resulting in
an overall accuracy of 0.75 (spatial reasoning tasks are predicted
best—0.88) in both cases. For the random forest classifier trained on
the channel means—the rightmost column of Table 2—we can see
that the most informative channels for task prediction were linear
velocity, radial velocity, and angular velocity.

Table 6: Performance of cognitive circles with a random for-
est for predicting the type of task. Numbers correspond to
both channel means and MiniROCKET data representations.

F1 score Accuracy
Arithmetic Reading Spatial reasoning

0.63 0.75 0.88 0.75

6 Discussion
We first interpret the results to answer the two research questions.
Then we discuss what the answers mean for the implementation of
cognitive circles as a practical way to measure mental workload.
Finally, we highlight the limitations of the study and the approach.

6.1 Touch traces do contain information about
the task’s difficulty (RQ-A)

The evidence from our experiment supports an affirmative answer
to our first research question. All prediction pipelines achieved
overall accuracies above chance (50% for a binary prediction), rang-
ing from 71% to 75% when estimating the designed difficulty (i.e.,
the difficulty with which we created the tasks) and between 63% and
69% for the perceived difficulty (the binary difficulty label reported
by participants). We found that predictions from the circle traces

were more accurate for designed difficulty than for perceived diffi-
culty, suggesting that the traces capture more information about
the objective (criteria-based) difficulty of tasks than about partici-
pants’ judgments. This finding lends some support to the validity of
our approach and existing reliability concerns and inherent noise
associated with subjective assessments.

Despite the affirmative answer, it is difficult to know, at this mo-
ment, whether the information carried by the traces is sufficient for
reliably measuring workload in practical scenarios. On one hand,
our experiments distinguished only between clearly defined easy
and difficult tasks within a controlled environment, achieving ac-
curacy levels potentially insufficient for real-world assessments
(e.g., to compare two subtly different interfaces to complete a task).
On the other hand, our accuracy results represent only a lower
bound of what is achievable because: A) predictions were evaluated
on data from participants that were never seen by the learning
algorithms (i.e., all our tests were highly stringent); B) the number
of participants is relatively small, and; C) our exploration of ma-
chine learning approaches was not fully comprehensive. Another
promising indication from our analyses is that one regression model
(HiPaR on channel means) reached an 𝑅2 of 0.54 for the 7-point
scale difficulty. We discuss promising options to further improve
accuracy in Subsection 6.3.

6.2 Different tasks have shared indications of
difficulty but significant differences (RQ-B)

The evidence from our experiment indicates that the answer to our
second question is also affirmative: training on traces from multiple
tasks improves predictive performance in other tasks. However, the
magnitude of this improvement is modest, and variability in per-
formance across tasks remains substantial. Furthermore, explicitly
providing the task type as input improves prediction accuracy for
some algorithms. Together with the fact that the task itself can be
predicted from the traces (Table 6), this means that the patterns are
fairly different between tasks.

Despite our efforts to balance the difficulty of trials across the
different tasks, our experimental design does not allow us to de-
termine whether these pattern differences arise from disparities
in how we calibrated difficulty (an “easy” spatial reasoning task
might be harder than a “difficult” reading task), or from intrinsic
differences in the cognitive processes required by each task type.
Nevertheless, the result has immediate implications for the future
development of Cognitive Circles as a viable measuring technique.
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To achieve sufficient accuracy in realistic scenarios, it will likely be
necessary to train predictive models on traces covering a range of
task types and a finer scale of difficulty levels. In retrospect, expect-
ing a single machine learning model to generalize effectively across
highly diverse cognitive tasks and capture a universal workload
construct was overly optimistic.

6.3 Next Steps
The results from our analyses indicate several promising avenues to
improve the accuracy and practical applicability of cognitive circles
as a mental load measurement technique. A critical first step is to
obtain larger datasets that reflect variability in human motor behav-
ior in a more comprehensive way—potentially achievable through
remote data collection. Additionally, expanding data collection to
cover non-binary ranges of difficulties would enable continuous
estimates of mental workload, significantly increasing the method’s
practical value for tasks requiring more subtle discriminations.

Future training datasets will also need to encompass a broader
and more representative selection of tasks relevant to practitioners.
Other tasks could include, for example, visual comparison, visual
search, and different low-level subtasks of sensemaking. If a general
model is not sufficiently accurate, explicitly providing the task type
as an additional input to the machine learning pipeline might help
increase predictive performance, as suggested by our results.

Finally, for more accurate and subtle measurements, a hybrid ap-
proach combining general population-basedmodels with participant-
specific calibration seems promising. In other words, if we ask par-
ticipants to perform tasks with known, a priori difficulty levels, it
would become feasible to derive personalized workload estimates
of greater precision.

6.4 Limitations and Open Questions
An inherent limitation of the cognitive circles approach is that, in
practice, individuals rarely perform secondary motor tasks with
one hand while interacting with information. This limitation might
be mitigated by employing the non-dominant hand or, when both
hands are needed for the primary task, by tracking movements from
other body parts, such as the feet [29, 42]. We also suspect that the
degree of information contained in the traces might vary depending
on the level of motor activity required by the primary task—our
study examined only tasks without explicit motor requirements
(e.g., moving the mouse, pressing keys).

There are several important open questions that will need to
be addressed in future work. First, it is unclear whether increas-
ing dataset size and ecological validity—through remote, varied
data collection methods (e.g., online, with different devices and
setups)—would enhance the robustness of the data. Second, it is
uncertain whether the notion of a common workload construct
across diverse task types will stand scrutiny once a broader set
of tasks is tested; if not, we might have to constrain ourselves to
workload comparisons within the same type of task. In any case,
future work should validate cognitive circles against established
subjective and objective measures of mental workload.

7 Conclusion
This paper introduced Cognitive Circles, a novel approach that esti-
mates mental workload by leveraging continuous circle-tracing be-
havior. We conducted a dual-task experiment in which participants
traced circles on a tablet while completing cognitively demanding
tasks of three types (arithmetic, spatial reasoning, and reading).
Our analyses indicate that the kinematic features of the traces can
predict both the designed and perceived difficulty of these tasks
with accuracies up to 94%, highlighting that motor coordination
signals provide valuable cues about cognitive load. Yet, our findings
also reveal significant performance variability across task types,
pointing to the need for task-aware modeling in certain contexts.

Overall, these results offer a promising yet preliminary demon-
stration of how Cognitive Circles can deliver cost-effective work-
load assessments. Ultimately, we envision that the technique may
inform the design of cognitively adaptive systems, enabling more
nuanced and potentially real-time assessments of mental workload
across a wide range of scenarios.
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