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Abstract

The increasing interest in Semantic Web technologies has led not only to a rapid
growth of semantic data on the Web but also to an increasing number of sources
and backend applications with more than a trillion triples in some cases. Confronted
with such huge amounts of data, existing state-of-the-art systems for storing RDF
and processing SPARQL queries will be no longer sufficient. This thesis introduces
Partout, a distributed engine for scalable RDF processing in a cluster of machines.
It shows how to fragment RDF collections based on a query log, how to allocate the
fragments to nodes in the cluster, and how to efficiently process SPARQL queries.
Experiments with several large collections including a standard benchmark, show
the superiority of Partout over naive partitioning techniques applied in today’s
distributed SPARQL engines.
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1 Introduction

The increasing interest in Semantic Web technologies has led to a rapid growth of
available semantic data on the Web. Recent advances in information extraction [20,
39, 55, 60] make it possible to extract knowledge from natural language text in an
efficient and accurate way and represent it in a machine-readable format, with RDF
(Resource Description Framework) as the most popular nowadays. Initiatives like
the DBpedia1 project support this assertion. At the moment of writing this thesis
(January 2012) , the latest version of the project (DBpedia 3.7), has reached a size of
3.64 million entities and approximately 1 billion RDF facts extracted from Wikipedia.
As the number of Wikipedia articles increases every day and information extraction
techniques keep improving, DBpedia and similar knowledge bases are likely to keep
on growing and require more and more resources for retrieval, processing and storage.
Moreover, The W3C has confirmed the existence of commercial data sets which have
already exceeded the 1 trillion triples barrier2.

This growing trend has been the motivation for other initiatives like the Semantic
Web Challenge3 which tries to push the state of the art in Semantic Web, towards a
better exploitation of the current plentifulness of semantic data and sources. The
2011 challenge required participants to design and implement an innovative software
system on top of a two billion triples dataset.
But it is not only the amount of data provided by a source that is increasing;

also the number of sources as the steady growth of the Linked Open Data (LOD)
cloud4 [6] in Figure 1 shows. By September 2011, the LOD cloud consisted of 295
datasets5 which add up to approximately 30 billion triples 6 LOD sources such as
DBpedia interlink their data by explicitly referencing data (URIs) provided by other
sources and therefore building the foundations for answering queries over the data of
multiple sources.
Furthermore, more and more small RDF data sets without query processing

interfaces become available on the Web. The data of such sources can usually be
downloaded and processed locally.

Query processing in these scenarios is challenging because of the different ways in
which sources can be accessed. Some sources provide SPARQL endpoints, others
are available as downloadable data dumps, and still others as dereferenceable URIs,

1http://dbpedia.org/
2http://www.w3.org/wiki/LargeTripleStores
3http://challenge.semanticweb.org/
4http://linkeddata.org/
5http://www4.wiwiss.fu-berlin.de/lodcloud/state/#domains
6http://www4.wiwiss.fu-berlin.de/lodcloud/
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Figure 1: Linking Open Data cloud as of September 2011.

which means a HTTP lookup of the URI will provide a set of RDF triples with
facts describing the entity identified by the URI. This led to a variety of approaches
for query processing that ranges from downloading the data at processing time
[27,29,30,34,35] to the application of techniques known from distributed database
systems [4,36,51,58] since a set of SPARQL endpoints resembles a mediator-based
or federated database system [21].

At the other end of the spectrum is data warehousing, where the data is downloaded
from the original sources and collected in a huge triple store. Query processing in
such a setup benefits from efficient centralized query optimization and execution.

1.1 Problem Statement

All the aforementioned approaches to address scalable query processing have strengths
and weaknesses. Federated solutions where every data source is independent, in
general avoid data maintenance and storage costs at the price of complex query
processing which normally leads to high response times in comparison to centralized
approaches. Data warehousing, on the other hand, suffers from the need to update
and recrawl the data regularly which in combination with an steady data growth trend
will sooner or later result in scalability problems. However, there exist in general
two common approaches to address scalable data processing in data warehouses:
buying bigger and expensive mainframes that can hold and process most of the data
in main memory (centralized processing) or use a scale-out architecture based on
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commodity hardware where multiple cheaper machines cooperate to achieve the same
goal (distributed query processing in a cluster).

Unlike fully centralized approaches, scale-out architectures have an inherent scala-
bility nature because the capacity of the system can be easily extended by simply
adding more machines to the infrastructure. But in order to implement such kind of
architecture, we need to address two major problems: (i) partitioning the data in an
optimal way plus assigning the partitions to hosts (fragmentation and allocation)
and (ii) guarantee efficient distributed query processing.

The concept of optimal fragmentation and allocation is context-dependent. Seman-
tic data is always consumed by software applications which normally have predefined
access patterns, thus an optimal fragmentation scheme should optimize for such
patterns in order to provide two guarantees: load balancing and scalability. These
guarantees are strongly interrelated because a skewed distribution of the load will
always lead to scalability problems as the overloaded components will become a
bottleneck during execution. In other respects, efficient query processing normally im-
plies small response time, high througput and good resource utilization, which again
are related to our previous guarantees because a system with scalability problems
will hardly achieve those goals.

1.2 Contribution

This thesis explores the use of a scale-out architecture for scalable and efficient
processing of RDF data. In summary, it provides the following contributions:

• Partout7, a distributed engine based on a scale-out architecture for scalable
RDF processing and distributed SPARQL query processing in a cluster of
machines,

• a novel data partitioning and allocation algorithm for RDF data in consideration
of a given sample query load, and

• a distributed query processing strategy and a cost model for the proposed
architecture.

Our evaluation shows that our approach is superior over the naive partitioning
techniques applied in state-of-the-art distributed SPARQL engines.
This thesis is structured as follows. After having discussed related work and

preliminaries in Section 2, Section 3 presents a novel method for query load aware
7pronounced like the French word partout; the name is a combination of the words partition

and scale-out
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RDF partitioning and allocation. Section 4 then presents algorithms for efficient
query processing and optimization. Section 5 shows the most relevant implementation
details and challenges faced to build Partout. An evaluation of the proposed
approach is covered in Section 6. Finally, Section 7 concludes the thesis with a
summary and an outlook to future work.
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2 Background and Related Work

In this section, we present background concepts relevant to the context of semantic
data, efficient query processing and database fragmentation and allocation. First we
introduce the idea of the Semantic Web and two of its building blocks: the RDF data
format and the SPARQL query language. Then, we address the different alternatives
for efficient and scalable query processing to finally discuss about fragmentation and
allocation for databases.

2.1 The Semantic Web

Coined by Tim Berners-Lee, the inventor of the World Wide Web, the Semantic Web
can be defined as an evolutionary stage of the current WWW, where the web of
documents evolves into a web of data. Web pages are pieces of more or less structured
information written in natural language, tailored for humans but hard to process by
computers. In contrast, in the web of data, the information is in a format easy to
read by computers. This provides a huge potential for sophisticated software agents
relying on efficient information search and retrieval with the possibility of even more
powerful inference approaches and easy data integration (by linking). The document
is not anymore the central unit of information, but it is instead replaced by the
resource. In this context, a resource is a conceptual model of any real-world entity
like a person, a book or a place. As Tim Berners-Lee stated in the original article
introducing the Semantic Web [62], “It is not a separate Web but an extension of
the current one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation”.

2.1.1 Knowledge databases

Giving information a well-defined meaning implies it has to be represented in a
format that allows computers to “understand” the semantics of the data. Unlike the
web of documents where those semantics are provided implicitly, the web of data
requires them to be explicitly expressed. This allows us to introduce the concept of
an ontology: the description of the concepts and relationships that can exist for
a group of resources. If our resources are people, then an ontology can explicitly
state that people can be friends of other people. This concept of friendship between
two resources of type person is what an ontology describes. The popularity of the
semantic web initiative has led to the emergence of many ontologies for a broad range
of domains like Media, Life Sciences, Goverment among others. Popular ontologies
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like FOAF (Friend of a Friend)8, BIO (A vocabulary for biographical information)9

or Dublin Core10 are frequently used across domains. Moreover, the W3C offers two
recomendations for the specification of ontologies. RDF Schema11 which provides
basic elements for the description of ontologies, whereas the OWL Web Ontology
Language12 and its three sublanguages OWL Lite, OWL DL and OWL Full offer a
wider and incremental set of features to design ontologies.

2.1.2 RDF - Resource Description Framework

Besides the framework provided by an ontology, the web of data requires a format to
represent the actual facts or knowledge. There is where RDF (Resource Description
Framework) comes into play. It is a language aimed for representing information or
knowledge about resources and is a W3C recommendation13. It is one of the building
blocks of the Semantic Web.

RDF represents pieces of knowledge as triples of subject, property and object. The
subject is a resource with a unique identifier. It is the real world entity, this unit of
knowledge talks about. The property, on the other hand, is the quality or trait of
the resource that is being described, whereas the object is the value associated to
that property.

Example 1. An RDF triple
@ prefix db:<http :// dbpedia .org/ resource />
@ prefix dbp:<http :// dbpedia .org/ property />
db: The_Lord_of_the_Rings dbp:title "The Lord of the Rings"@en

Example 1 shows a typical RDF triple using the N3 format 14. Subjects in RDF
are always resources which can be identified either by a URI or a blank node. A
blank node is a resource with an identifier with limited scope, normally the file or
database where the triple is stored in contrast to URIs which are designed to have
a global scope and allow for external linking. Properties are always URIs. Objects
can be either URIs, blank nodes, or literals. Literals are used to identify values such
as numbers, strings, or dates by means of a lexical representation. A literal can be
plain or typed. A plain literal is a string combined with an optional language tag
and they are normally used for plain text in a natural language like in Example 1.

8http://www.foaf-project.org/
9http://vocab.org/bio/0.1/.html

10http://dublincore.org/
11http://www.w3.org/TR/rdf-schema/
12http://www.w3.org/TR/owl-features/
13http://www.w3.org/RDF/
14http://www.w3.org/TeamSubmission/n3/

11

http://www.foaf-project.org/
http://vocab.org/bio/0.1/.html
http://dublincore.org/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/
http://www.w3.org/TeamSubmission/n3/


A typed literal is a string with the lexical representation of a value of a particular
datatype, whose URI is always explicitly written. The lexical representation of a
value is its string representation. For example the strings “true” and “1” are two
lexical representations for the boolean value true. The N3 keyword @prefix can be
used to declare abbreviations for prefixes and is useful when many URIs in a dataset
contain the same prefix so that redundancy is avoided. In Example 1, dbp:title is
actually an abbreviation for http://dbpedia.org/property/title

Example 2. RDF Triple with a typed literal in the object position
@ prefix db:<http :// dbpedia .org/ resource />
@ prefix dbo:<http :// dbpedia .org/ property />
db: Abraham_Lincoln dbo: deathDate "1865 -04 -15"^^<http :// www.w3.org

/2001/ XMLSchema #date > .

Even though RDF databases can be seen naturally as triple stores, they are studied
frequently using the graph based data model as Figure 2 shows. The web of data
is about representing knowledge, but also about linking it with other knowledge
provided by independent sources. For that reason, a semantic database can be seen
as a directed and labeled graph, which we call the Data Graph, where subjects and
objects are nodes and the predicates are represented by directed, labeled edges. This
model is normally useful for formal specification, as well as for visualization because
it provides an insight of the actual data topology.

Figure 2: An RDF data graph
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With this introduction, we are ready to provide the formal definition for a triple
store, based on some definitions given by the W3C [57]:

Definition 1. Let U , B and L be pairwise disjoint infinite sets of URIs, blank
nodes and literals. An RDF triple t (subject, property, object) is an element of
(U ∪ B)× U × (U ∪ B ∪ L). Define πsubject(t), πproperty(t), πobject(t) as the subject,
property and object values for the RDF triple t.

Definition 2. An RDF triple store T is a set of RDF triples. We denote as GT the
corresponding data graph representing T .

Definition 1 formalizes the definition of an RDF triple and borrows some notation
from relational algebra to refer to its components. Then it is used to define an RDF
knowledge base or triple store in Definition 2.

2.1.3 The SPARQL Query Language

The SPARQL query language is to RDF Graphs as SQL is to relational databases.
It is a declarative language to extract data from RDF graphs and is a W3C standard
recommendation15. A SPARQL query can be seen as a subgraph pattern that
has to be matched against an RDF data graph in order to provide some specific
information. It consists of a set of triple patterns. A triple pattern has the same
structure as an RDF Triple, but it can contain unbound values or variables which
are normally prefixed using the question mark character (?). SPARQL queries can
be of type SELECT, ASK, CONSTRUCT and DESCRIBE depending on the type
of information required from the data graph and its intended use. For example a
SPARQL SELECT query is used to retrieve a set of values matched by a subgraph
pattern in the data graph, whereas a SPARQL ASK query simply tests whether
a given subgraph pattern has a solution or not. It is possible to derive new data
graphs with the information matched by a subgraph pattern, by means of a SPARQL
CONSTRUCT query which additionally requires a graph template for the structure
of the new data graph. SPARQL DESCRIBE queries on the other hand, return
subgraphs containing information about the resources matched by the given subgraph
pattern. Since a complete formal specification for the SPARQL query language is far
beyond the scope of this thesis, we restrict the description only to SELECT queries
which are relevant for our purposes.

Definition 3. Let V be the set of all possible query variables, and define Ψ := U∪B∪
L with Ψ∩V = ∅. A triple pattern p is an element of (U ∪B∪V )×(U ∪V )×(Ψ∪V ).

15http://www.w3.org/TR/rdf-sparql-query/
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Moreover, let πsubject(t), πproperty(p), πobject(p) be the subject, property and object
components of the triple pattern p.

Definition 4. A basic graph pattern is a set of triple patterns.

Definitions 3 and 4 are the building blocks for any SPARQL query and provide
the basis to introduce the concept of a SPARQL expression.

Definition 5. A SPARQL expression is recursively constructed as follows. (1) A
basic graph pattern is an expression. (2) If Q1, Q2 are expressions and R is a
filter condition, then Q1 FILTER R, Q1 UNION Q2 , Q1 OPTIONAL Q2 and
Q1 AND Q2 (the same as Q1 . Q2) are also expressions. R is a SPARQL filter
condition 16 over vars(Q1), where vars(Q1) is the set of variables occurring in Q1.

Example 3. A SPARQL expression
? person foaf:name ?name .
? person foaf:mbox "me@uni - saarland .de" .
? person yago: birthDate ?bdate .
OPTIONAL { ? person foaf: friend foaf: Fred_Flinstone }
FILTER bdate >= "1985 -06 -12"^^xsd:date

Definition 5 introduces a SPARQL expression, the central component of any
SPARQL query and Example 3 illustrates how a basic graph pattern with three triple
patterns is combined with other subexpressions to produce a SPARQL expression.
However this definition still does not provide a clear insight about what it means to
answer a SELECT query in a triple store. For that purpose we need to introduce
the concept of a solution mapping (Definition 6).

Definition 6. Let V be the set of all possible query variables, and define Ψ :=
U ∪B ∪ L with Ψ ∩ V = ∅. A solution mapping µ is a partial function µ : V → Ψ.
The domain of µ, denoted by dom(µ), is the subset of V where µ is defined.

The solution of a SPARQL expression over a RDF triple store T is described by a
set of mappings between the variables and the constants in the triple store, where
each mapping represents a possible answer. In Example 4, µ1(Q) and µ2(Q) replace
the variables with the values in the mappings, producing RDF Triples which must
be in T .

Example 4. Consider a SPARQL expression Q:
?city yago:label ?name .
?city yago: locatedIn yago: Germany

16For a formal definition of filter conditions, please refer to [57]
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and the mappings µ1 := {?city → yago:Berlin, ?name → “Berlin”@de},
µ2 := {?city → yago:Hamburg, ?name → “Hamburg”@de} Then dom(µ1) = dom(µ2)
= {?city, ?name} and µ1(Q), µ2(Q) ∈ T

Given the definition of a SPARQL expression, it is straightforward to define a
SPARQL SELECT query by simply adding a projection over the variables occurring
in the SPARQL expression. This is formalized in Definition 7.

Definition 7. Let Q be a SPARQL expression and let v ⊆ V be a finite set of
variables. A SPARQL SELECT query is an expression of the form SELECTv(Q).

Figure 3: (a) A basic graph pattern (b) A data graph matched by the basic graph
pattern in (a)

Example 5. List the names of all the acquaintances of the person whose email
address is me@uni-saarland.de
@ prefix foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?name WHERE {

? person foaf:mbox me@uni-saarland.de .
? person foaf: friend ? friend .
? friend foaf:name ?name .

}

Example 5 shows a SPARQL SELECT query which projects one of the variables
from its SPARQL expression. Its solution consists of all the values of variable ?name
across the different mappings in the solution of the SPARQL expression. Additionally,
this process can be a seen as a graph matching problem, where the basic graph
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pattern contained in the expression is a subgraph that must be matched against the
data graph GT [31] as Figure 3 illustrates.
Finally, Table 1 maps the most relevant features of the SPARQL query language

to their RA (Relational algebra) counterparts. It is important to mention that two
triple patterns with a variable in common expresses a join operation, therefore we
can conclude that queries over RDF data graphs are mostly conjunctive and join
oriented.

Table 1: Mapping from a subset of SPARQL to Relational Algebra. Q, Q1 and Q2 are
SPARQL expressions.

SPARQL Construction Operation Expression in RA
SELECTv(Q) Projection πv(Q)

Q1 . Q2 Join Q1 on Q2
Q FILTER R Selection σR(Q)
Q1 UNION Q2 Union Q1 ∪Q2

Q1 OPTIONAL Q2 Left Outer Join Q1 onQ2

2.2 RDF Query Processing

This section explores the state of the art in RDF data processing. It first mentions
several observations made on real RDF triple stores and then discusses the different
approaches for RDF processing which depend on whether the data is materialized or
virtually integrated from independent sources. It leads to a wide variety of approaches
from fully centralized solutions (data warehousing) to parallel and distributed infras-
tructures. The section concludes with a general overview of the goals and challenges
of query processing in information systems.

2.2.1 RDF Stores

The plethora of semantic datasets has motivated an increasing amount of research in
the field of query processing on RDF stores. Even though RDF data can be easily
represented in relational databases and take advantage from years of research in this
field, its schema free nature allows for completely native solutions like RDF-3X [43,44]
or Hexastore [65]. But not only the data structure of RDF differs from relational
data, also its access patterns. SPARQL queries are often much more join oriented
than queries for relational data, hence requests with 15 or 20 joining triple patterns
are not rare. This certainly imposes a need for efficient join processing methods which
are normally complemented with heavy indexing approaches on the three attributes.
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Heavy indexing however, assumes updates are infrequent since any modification to
the data implies to update all the indexes, a very expensive operation. This looks
intuitive if we consider the fact that semantic data was aimed since its inception for
consumption (mainly reads) rather than for online transaction processing (OLTP
loads rich in reads and writes). Additionally, semantic data is often generated as
the result of an information extraction process which tends to produce new data,
instead of updating the existing one. [24] makes some assumptions about RDF data
graphs based on observations from real-world datasets. In general values appearing
as properties in a triple have much lower selectivity than values appearing as objects,
with subjects as the most selective. The rationale behind this observation has its
roots in the original purpose of RDF, a language to describe information about
resources. The number of different resources in a huge dataset is indeed big, thus any
query asking for the triples encoding information about a single resource is highly
selective. All these assumptions were taken into account when designing Partout.

2.2.2 Centralized Approaches

Building efficient databases for storing and querying RDF on a single machine has
been a very active research topic for some years; Sakr and Al-Naymat [54] give an
extensive overview of recent results in the field. As RDF data consists of triples, one
approach is to consider the data as a big table with three columns (subject, property
and object), where each row represents one RDF statement. Alternatively, the data
can be split up into multiple relations, e.g., using different relations for different
properties. In both cases, relational database systems can be used to manage the
data [54].
The straightforward layout of the RDF data allows for optimization techniques

that are usually too expensive when applied in the more general context of relational
databases, e.g., heavy indexing on all three attributes and aggregate indexes, which are
implemented in native RDF triple stores such as RDF-3X and Hexastore, in contrast
to solutions like Jena [9], Sesame [7] or Virtuoso [22] which provide a framework for
building semantic applications independent from the underlying storage model, e.g
relational, object-oriented, XML, etc. It should be emphasized however that these
applications are also frequently used in the context of data integration of remote
heterogenous sources.
Property tables [66] provide an alternative storage scheme; a property table

combines multiple properties with the same subject so that a single table row may
store multiple RDF statements (triples). They can be implemented as materialized
views in combination with a partitioning by property scheme in order to cluster the
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bindings for triple patterns that join frequently and improve query processing. As
shown, for example, by Levandoski and Mokbel [37], in some cases property tables
can be more efficient than other storage techniques.

As an alternative to considering triples as rows in relational tables, column stores
like SWStore [1] and MonetDB [59], split up the data column-wise, i.e., splitting
triples up into separate columns for subject, predicate, and object.

2.2.3 Distributed Approaches

As more and more RDF knowledge bases become available on the Web, research not
only has to consider the problem of centralized management but also has to solve the
problem of distributed query processing, i.e., how to efficiently answer queries over
multiple independent RDF sources. Ideally, all sources provide SPARQL endpoints
so that the problem can be solved by adapting techniques developed in the context
of distributed database systems [4, 36,51,58]. However, there is also a high number
of data sources whose data can only be accessed by downloading RDF dumps or by
dereferencing URIs. Dereferencing a URI means to perform an HTTP lookup of the
URI, which provides a set of RDF triples with facts about the entity identified by the
URI. There are basically two ways to handle this kind of distributed data and answer
queries. First, find all possibly relevant sources, download the data (crawling), and
collect them in a data warehouse for future queries. Or second, identify relevant
sources for a given query and download the data during query processing. In the first
case, we can use the above mentioned centralized approaches as everything is stored
in a centralized database (the data warehouse) whereas in the second case we need
techniques that identify relevant sources during query processing for a particular
query and download only relevant data [27,29,30,34,35].
Literature has also proposed approaches for RDF processing based on P2P sys-

tems [23], e.g., RDFPeers [8], Atlas [33], GridVine [2], RDFCube [38], and MIDAS-
RDF [63].

In general, approaches for distributed processing fall into two categories: bottom-up
and top-down. In a bottom-up architecture, the data is provided in a distributed way
by a number of independent sources. In data integration terminology, this roughly
corresponds to virtually integrated systems [21] or, with respect to the subclasses, to
federated or mediator-based integration systems. Top-down architectures, on the
other hand, assume to be given a big data collection as well as a number of machines
and try to partition the data (fragmentation) and assign them (allocation) to a
number of (perhaps independent) servers in a way that allows for efficient distributed
query processing. Variations in the design can arise depending on the servers’ level
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of autonomy. Partout is an example of a system that falls into the category of
top-down architectures where the servers have no autonomy.

2.2.4 Parallel Processing and Clusters

The degree of independence between the sources plays an important role. In bottom-
up architectures, sources retain the highest degree of independence whereas the
top-down approach requires a much higher degree of cooperation as the data is
assigned to the sources by a global rule or algorithm for fragmentation and allocation.
If the sources, or servers respectively, in a top-down architecture are all part of a local
cluster, query processing can also benefit from extensive use of parallel processing
techniques.
There is a number of commercial systems using clusters of machines for scalable

processing of RDF data [10, 25]. Bigdata17, for instance, uses B+ tree indexes to
organize the data, dynamically partitions the B+ tree into index partitions (key-range
shards), and assigns the partitions to the servers. Bigdata uses three indexes (SPO,
POS, and OSP) to provide efficient access for different types of RDF triple patterns.
For SPARQL processing, bigdata uses Sesame 218 for query parsing and generating
an operator tree but overrides Sesame’s query evaluation strategy using the Storage
And Inference Layer (SAIL) API. The SAIL implementation transforms the operator
tree into custom operators that are optimized, e.g., join order optimization based on
selectivity of triple patterns and applying pipelined joins across cluster nodes.
Another system, OWLIM Replication Cluster19, also allows to increase query

throughput using multiple nodes but it does not distribute the data over the nodes
in the cluster. On the contrary, the data is replicated at all nodes, i.e., all nodes
have all data.
As an alternative to applying techniques known from parallel databases [18],

an increasingly large number of systems uses MapReduce [17]-style techniques to
efficiently process RDF data in clusters. Examples for such systems are RDFPath [48],
PigSPARQL [56], SPIDER [13], and systems recently proposed by Husain et al. [32]
and Ravindra et al. [53]. A common disadvantage shared by all of them is the large
response time of MapReduce processes.

17http://www.bigdata.com/
18http://www.openrdf.org
19http://www.ontotext.com/owlim/replication-cluster
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2.2.5 Fragmentation and Allocation

An important step for setting up a top-down distributed database system is to split
up the data (fragmentation) and assign the fragments to peers (allocation). First
papers on this topic were published already twenty years ago for relational databases.
With respect to fragmentation, we need to distinguish two basic approaches:

horizontal and vertical partitioning. Horizontal partitioning [11,19,67], depicted
in Figure 4 (a), means that a relation is split up row-wise, so tuples are assigned to
different partitions. Vertical partitioning [12,14,26,40], on the other hand, means
that a relation is split up by its columns and therefore its attributes (columns) are
assigned to different partitions as shown in Figure 4(b).
Additionally, hybrid approaches are also possible, like combining horizontal and

vertical partitioning [3] or what is called derived horizontal fragmentation.
In the first scenario, a fragment obtained by any of the two approaches is again
conveniently partitioned, whereas derived horizontal fragmentation splits a relation
based on the fragmentation of another relation when they are frequently joined on a
given attribute. The latter mechanism achieves a 1-to-1 join partnership between
the fragments which means the join of the two original relations can be expressed as
the union of the joins for the pairs of matched fragments in the join graph, which
can be processed in parallel. Figures 4 (c) and (d) depict this scenario.
The correctness of a given fragmentation is defined in terms of two criteria:

disjointness and completeness. Disjointness means that the data contained in the
fragments does not overlap and avoids duplicated information. Completeness in other
respects, guarantees there is no data loss after the process, i.e., all pieces of data are
effectively assigned to a fragment. The completeness of a fragmentation scheme is
formally defined using reconstruction rules. Given a relation R with fragmentation
FR = {R1, R2 . . . Rn} and key attributes K (set of attributes in the primary key) the
reconstruction rules state that the combination of the fragments should produce the
original relation. The fragments are combined using the Union or Join operator for
horizontal and vertical fragmentation respectively.

R =
n⋃
i=1

Ri (1)

R =onK Ri i ∈ {1, 2, . . . n} (2)

Note that in vertical fragmentation, all fragments share the columns in the primary
key, since the reconstruction rules need them in order to connect the different
fragments a row is split.
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emp_id firstname lastname role_id

1 John Doe 1

2 Max Mustermann 1

3 Juan Perez 2

4 João da Silva 2

5 Lieschen Muller 3

(a)

emp_id firstname lastname role_id

1 John Doe 1

2 Max Mustermann 1

role_id title

1 Engineer

2 Architect

3 Lawyer

SELECT firstname, lastname 
FROM Employee
WHERE role_id = 1

emp_id firstname lastname role_id

3 Juan Perez 2

4 João da Silva 2

5 Lieschen Muller 3

 role_id = 1

 role_id ≠ 1

(b)

emp_id firstname lastname

1 John Doe

2 Max Mustermann

3 Juan Perez

4 João da Silva

5 Lieschen Muller

emp_id role_id

1 1

2 1

3 2

4 2

5 3

(d)

role_id title

2 Architect

3 Lawyer

role_id title

1 Engineer

Employees Roles

Roles
1

Roles
2

Employees
1

Employees
2

Roles
1

Roles
2

Employees
1

Employees
2

Employes  Roles⨝

(c)

Figure 4: (a) Example of horizontal fragmentation for relation Employees based on the
boolean predicate role_id = 1 taken from a query. (b) Example of vertical fragmentation
for relation Employees. (c) Example of derived horizontal fragmentation for relation Roles
based on fragmentation in (a). (d) Join graph for the operation Employees on Roles using

the fragments.

The purpose of any fragmentation approach is to cluster pieces of data accessed
together in the same fragment for the sake of efficient query processing. In some
cases it implies queries can run in a single fragment or take advantage of parallelism
like in the previous example. This is normally achieved by analyzing the data access
patterns, i.e, in a query log and use them accordingly. For horizontal fragmentation,
it implies to extract boolean predicates from the queries to partition the tuples set
based on whether they match or not those predicates like in Figure 4(a). The optimal
horizontal fragmentation algorithm [19, 45] achieves this by using the minimum
number of boolean predicates given a big number of predicates extracted from the
query load. For vertical fragmentation, capturing the access patterns means to
cluster columns based on their co-occurrence in the queries [40].

A recently proposed approach, Schism [15] uses a graph-based method to find a
partitioning of relations. Nodes in the constructed graph correspond to tuples, edges
connect two nodes when a transaction accesses data of both nodes. After having
applied a graph partitioner to split the graph into partitions, a machine-learning
technique is applied to find a predicate-based explanation of the partitioning strategy.
Another approach is to use the database system’s internal optimizer to obtain

21



accurate statistics and cost estimations for a given query load. Such an approach was,
for instance, proposed in the context of IBM DB2 [52] where candidate partitions
are created based on information such as equality predicates contained in the query
load. Given a list of candidate partitions for each table, the advisor combines
them and uses the internal optimizer to find an optimal combination for the given
query load. Similarly, AutoPart [47] was developed in the context of Microsoft SQL
Server. It takes into account a set of attributes with a small set of distinct values for
horizontal fragmentation and combinations of attributes used in queries for vertical
fragmentation. By using the database system’s query optimizer, the approach can
select the optimal configuration for a given query load. The most recent work in this
area was proposed by Nehme and Bruno [41] in the context of Microsoft’s SQL Server.
This approach is deeply integrated into the system and uses internal representations
of query plans and information about their search spaces. The optimization algorithm
identifies interesting columns for partitioning, i.e., columns referenced in equality
join predicates and any subset of group-by columns. A branch and bound search
algorithm tries to find a good fragmentation based on the identified columns.
All the aproaches discussed so far assume the data follow the relational model;

however the notion of fragmentation and allocation is applicable to any data model.
The current popularity of OSNs (Online Social Networks) has motivated an increasing
amount of work towards the development of scalable infraestructures able to support
the steady growth of social data and concurrent requests. Because of this scalability
requirement, some of them rely on scale-out architectures [49, 50]. The approach
implemented in SPAR for example [49] partitions the data in a way that preserves
the underlying community structure as much as possible. SPAR considers replication
and ensures that the data of all friends of a user hosted on a particular server is
co-located on that same server, thereby guaranteeing local semantics of data. This
method does not use a concrete query load to extract access patterns, instead it
infers them from the social graph.
The problem when trying to apply these approaches to RDF data and SPARQL

queries is that they were developed for scenarios with different characteristics, like
joins between multiple relations versus many self-joins typical in RDF data, or OLTP
(Online Transaction Processing) loads with a large number of short online transactions
(reads and writes) with strong requirements of data consistency, versus the OLAP
(Online Analytical Processing) nature of RDF query loads, mainly aimed for reading.
Additionally, solutions like Schism [15] will suffer from scalability problems since they
strongly rely on the data itself to solve the problem of partitioning, rather than in
statistics which are much easier to gather (sometimes they are already there) given
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the simple structure of RDF data and its read-oriented access patterns. Finally,
vertical partitioning approaches cannot really be applied to RDF data since a triple
store is a relation with only three attributes.

Literature also proposes a few systems for RDF processing that make use of repli-
cation [22,28]. YARS2 [28], for instance, uses multiple servers and stores RDF triples
multiple times as key-value-pairs over a set of machines. However, these approaches
do not consider any query load for the decision which tuples to replicate, they simply
insert a triple multiple times, e.g., by subject, predicate, and object, so that triple
can be found efficiently for any given query. In most cases, the optimization goal is
load balancing among nodes instead of the minimization of network load. Moreover,
replication makes updates more expensive.

Regarding allocation, any fragmentation scheme must be complemented with an
allocation policy which assigns fragments to hosts considering two golden rules: data
locality, i.e., place the data as close as possible to where it will be used, and load
balancing which means all hosts should receive the same (perhaps proportional to their
capacity) amount of load in terms of storage space and query requests. This problem
can be formulated as a linear optimization problem [16] which is computationally
expensive to solve and incurs in high costs if the data keeps changing or growing
and reallocation is frequently needed. For that reason, there exist much simpler
approaches based on heuristics or greedy methods which still provide good solutions
with minimal computational cost [61]. Strategies like the Non-redudant best fit
method, simply allocate a fragment to the host that uses its data most frequently.
The All Benefitial Nodes strategy in contrast, models the benefit and the cost
of assigning a particular fragment to a host, based on information about the hosts
access patterns, I/O and network latency. It considers replication and places a copy
of a fragment to any host where the benefit is greater than the costs. Note however
that these methods require previous information about the hosts access patterns for
the data, which does not apply for some scenarios like data warehousing.

2.2.6 Distributed Query Processing

From a high-level point of view, the goal of any query processing approach is to
answer queries as efficiently as possible. The exact notion of efficiency certainly
depends on the concrete application and scenario, but it is safe to state that for
most systems, they are oriented to provide properties like low response time and
high throughput. Response time is defined in literature in two ways: as the time
elapsed from the initiation of the query until the retrieval of (a) the first result or
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(b) the last result [45]. This metric, however, ignores other less obvious factors like
the resource utilization, strongly related to a high throughput. The latter property
is a measure of the system’s performance and it is defined in terms of completed
operations per time unit. In the presence of many concurrent requests, the system
and its infrastructure resources are challenged, therefore any sort of waste or load
imbalance is not acceptable.
In this context the most common resources are storage space, memory usage,

I/O, and CPU time. Furthermore, distribution makes things harder and introduces
network bandwith. It is a well-known fact in distributed database systems, that
communication costs normally dominate the response time with evidences of ratios
in the order of 20:1 between transmission over WANs and I/O time [45]. The
situation for LANs is less serious, with experiences suggesting ratios of 1.6:1 [46],
which still does not allow to disregard the impact of network transmissions in the
overall response time. By contrast, minimizing the communication costs might look
counterintuitive with our previous suggestions of optimal resource utilization because
it implies that distributed query planners should tend to execute subqueries as local
as possible, which does not leverage the great potential for parallelization when
there are multiple machines. Moreover, subqueries in SPARQL are basically joins of
triple patterns which in combination with the aforementioned ideas implies that the
bindings for two joining triple patterns should be allocated in the same place, but
independent subqueries should run in parallel in different machines.

A balanced and optimal resource utilization becomes even more crucial for scenarios
with scalability requirements. Scalability can be required either because the system
must handle more requests per time unit or because the amount of data keeps
growing. Top-down architectures have an inherent scalability nature because the
amount of available resources can be easily extended, by adding more computers
to the existing infrastructure. Unfortunately this is not enough to guarantee low
response time or high throughput. If the load distribution in the cluster is highly
skewed, the overloaded components will become a bottleneck which impedes good
performance. In such scenarios, optimal fragmentation and allocation introduced in
the previous section, play a central role. They consider two distinct but correlated
elements of the problem: the data distribution and its access patterns. For RDF
databases, the first element is related to the data graph topology, whereas the second
refers to the way the data is normally queried. In general we can assume data is
consumed by applications with predefined access patterns which can be used to
distribute the load in a fair way among the computers in the cluster.
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3 Load-Aware Partitioning

As mentioned in previous chapters, any top-down approach for query processing
requires a previous step where the data is partitioned and allocated among the
computers in the cluster. The purpose of this chapter is to describe how this step was
implemented in Partout by taking into account the data access patterns encoded
in a query load. In summary, the query load aware partitioning process takes a
SPARQL query load and extracts its most relevant access patterns to turn them
into boolean predicates, used to feed an optimal horizontal fragmentation algorithm
which outputs a set of fragments. A second stage takes the obtained fragments and
allocates them in a set of hosts so that they get approximately the same load. The
discussion starts with some ideas and assumptions about the requirements of a query
load in order to describe the methods developed to achieve this.

3.1 Query Loads

A query load is a set of queries that are expected to be issued in a running system.
They can either be collected from an existing system or estimated from the queries
in applications consuming the RDF data. Queries encode access patterns. In the
context of RDF and Partout, they are expressed in the SPARQL query language
and provide various information like which constant values are common or which
triple patterns frequently join or occur together. They also have to be syntactically
correct and non-trivial, which means the query processor must produce a query plan
and run it in order to get an answer even if the query has no results. If the queries in
a query load meet these requirements, we say the query load is representative. The
following definition formalize the notion of a representative SPARQL query load.

Definition 8. A representative SPARQL query load QL(Ql, Fl) over a triple store
T consists of a set Ql of representative SPARQL SELECT queries and a multiset of
positive integers Fl where the i-th element fli ∈ Fl denotes the frequency of occurrence
of qli, the i-th query in Ql. The size of QL denoted as sz(QL) is ∑

1≤i≤|Ql| fli

Table 2 summarizes the most relevant notation used in the remainder of this thesis.

3.2 Extracting Access Patterns from a Query Load

We assume that we are given a representative query load QL(Ql, Fl) as pairs of
SPARQL queries and positive integers denoting the number of times the query has
been issued.
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V Set of all possible variables
U Set of all possible URIs
L Set of all posible literals
B Set of all possible blank nodes
Ψ U ∪B ∪ L
q SPARQL query

B(q) triple patterns of q
C(q) non-optional triple patterns of query q
O(q) optional triple patterns of query q
F (q) filter predicates of query q

QL(Ql, Fl) query load with query set Ql and multiset of frequencies Fl
sz(QL) size of a query load QL
qli , fli i-th query and frequency components of QL(Ql, Fl)

Θ normalization threshold for constants in a query load QL
Ω anonymized variable

ω(p) anonymized version of triple pattern p
Φ(QL) set of anonymized normalized triple patterns in QL

G a graph
G(QL) global query graph

G(QL,M) global fragment query graph
witness(q, p) query q is a witness for the anonymized triple pattern p

witness(q, p, r) query q is a join witness for the anonymized triple patterns p and r
QLp,r(Qp,r

l , F p,r
l ) subset of the query load with the witnesses for pattern p

QLp(Qp
l , F

p
l ) subset of the query load with the join witnesses for patterns p and r

α, β simple predicates
M ′ set of minterms
M set of minterms for reduced set of simple predicates
m minterm and the corresponding fragment (long form: Tm)
F sets of fragments
T set of triples to fragment and allocate (triple store)
GT graph representation of a triple store T
p,r triple patterns, possibly normalized and anonymized

vars(p) set of variables of a triple pattern p
f(p) frequency of a triple pattern in QL, weight in G(QL)
f(m) frequency of a minterm (based on patterns in QL)
s(m) size of m (in number of triples)

sm(m) bitvector representation of minterm m
n number of hosts in the cluster
h a host in the cluster
Fh fragments assigned to host h
Th triples assigned to host h

L(m) load induced by fragment m
L load induced by all fragments
U uniform load over all hosts

CLh current load of host h

Table 2: Notation used in the remainder of the thesis
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For every ql ∈ Ql, we replace infrequent URIs and literals in triple patterns with
variables to avoid overly fine fragmentation of triples, i.e., building fragments that
contain only very few triples and that are accessed only by very few queries. As
an example, consider the triple pattern (?x,foaf:mbox,"alice@example.com") that
appears only once in the query load. We replace the object by an artificial variable,
yielding the normalized triple pattern (?x,foaf:mbox,?v) that captures the general
access pattern without fixing a constant object. Constants (literals and URIs) are
important for query processing because they are used for data lookup in efficient
data structures like indexes. In our previous example, an index on the property
column would allow to efficiently search and retrieve all the triples with property
value foaf:mbox. Nevertheless, they are in general unstable for partitioning because
a constant describing a hot topic could be a good discriminator as long as the topic
is of global interest. In our example the normalized version captures the general
pattern of searching for a resource given its email address. On the other hand, if the
literal "bob@example.com" appears in many queries in the query load, we keep triple
patterns such as (?x,foaf:mbox,"bob@example.com") even though they match only
very few triples, but are beneficial for many queries. We never normalize properties
under the assumption that queries with variables in the property position are rare.
The frequency threshold Θ (0 < Θ ≤ 1) is a tunable parameter that determines
how frequent a constant must be in order to survive the normalization process. For
example, consider a query load QL with size sz(QL) = 500 and Θ = 0.01. Denote
as QLconst(Qlconst, Flconst) ⊆ QL(Ql, Fl) the subset of the query load where const
occurs. If the size sz(QLconst) of such subset is greater or equal than 5, then const
is not normalized.
For each triple pattern p extracted from Ql, we further consider its anonymized

version ω(p) where each variable is replaced by the same anonymized symbol Ω. In
the example, the anonymized version of the normalized triple pattern (?x,foaf:mbox,
?v) is (Ω,foaf:mbox,Ω). We denote the set of all anonymized normalized triple
patterns extracted from query load QL as Φ(QL). Note that more than one original
triple pattern in QL can be mapped to the same anomymized pattern. For instance
a query load QL containing the triple patterns (?x,foaf:mbox,"bob@example.com"),
(?y,foaf:mbox,"alice@example.com") and (?x,foaf:knows,?y) would produce Φ(QL) =
{ (Ω,foaf:mbox,"bob@example.com"), (Ω,foaf:mbox,Ω), (Ω,foaf:knows,Ω) }, assuming
the constant "alice@example.com" is infrequent.

The next step is to take into account the join relationships between the anonymized
triple patterns. We first define the concept of a global query graph.

Definition 9. Let p, r be anonymized triple patterns and q ∈ Ql a SPARQL SELECT
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query. q is a witness for p, denoted as witness(q, p) iff ∃ p′ ∈ C(q) | ω(p′) =
p. Furthermore q is a join witness for p and r, denoted as witness(q, p, r) iff
witness(q, p) ∧ witness(q, r) ∧ vars(p′) ∩ vars(r′) 6= ∅.

A query q is a witness for an anonymized triple pattern p if p was derived from
one of the triple patterns in q. In other respects, two triple patterns join in a single
query if they share at least one variable, therefore the definition of join witness
queries allows to extend the join relationship for anonymized triple patterns, where
all variables have been replaced by Ω. This notion is used to build the definition of a
global query graph for a query load QL(Ql, Fl).

Definition 10. The global query graph for the query load QL(Ql, Fl), denoted as
G(QL) is an undirected weighted graph whose vertices are the elements of Φ(QL).
There is an edge between the triple patterns p and r iff ∃ q ∈ Ql | witness(q, p, r).
Also define QLp(Qp

l , F
p
l ) ⊆ QL(Ql, Fl) as the subset of the query load with witnesses

for pattern p and QLp,r(Qp,r
l , F p,r

l ) ⊆ QL(Ql, Fl) as the subset with join witnesses for
p and r. The weight of an edge, denoted as w(p, r) is sz(QLp,r), the size of QLp,r.
Likewise, the weight of p in G(QL), denoted as f(p) is sz(QLp).

The global query graph encodes the join relationships between the anonymized
triple patterns extracted from the query load. Its vertices are anonymized triple
patterns whereas there is an edge between two patterns p and r if there is at least
one query that is a join witness of them. The weight of the edge (p, r) is the sum
of the frequencies of the join witness of p and r in the query load. Vertices have
also weights which denote the number of witness queries for the anonymized triple
pattern defined by the vertex. The global query graph is used by the allocation
strategy described in Section 3.4, to determine the best host for a fragment based on
its join relationships with other fragments.

Query Frequency
q1 = ?s rdf:type db:city. ?s db:located db:Germany. ?s db:name
?n

2

q2 = ?s rdf:type db:city. ?s db:located db:USA. ?s db:population
?p

1

q3 = ?s rdf:type db:city. ?s db:located db:Germany. ?s
db:population ?p. FILTER(?r≤ 5× 106)

2

q4 = ?s rdf:type db:company. ?s db:located db:Germany. 1
q5 = ?s db:name ?c. ?s db:revenue ?r. FILTER(?r≥ 109) 2
q6 = ?s db:name "Apple". ?s db:revenue ?r. 12

Table 3: Example query load
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Example 6. Consider a triple store T with information about a total of 5000
entities, 3000 of them cities and 2000 companies and the representative query load
QL(Ql, Fl) described in Table 3. The table contains only the information of triple
patterns and filter conditions (used later in Section 3.3). The following statements
are true for QL:

• sz(QL) = 20

• Ql corresponds to the column “Query” in the table.

• Fl corresponds to the column “Frequency” in the table.

Assuming a normalization threshold Θ = 0.1 (a constant must appear in at
least 2 queries), we replace constants db:USA and db:company by a variable but
keep db:Germany, db:city, "Apple" and 109. For instance, the triple pattern ?s
db:located db:USA becomes ?s db:located ?v where ?v is a surrogate variable.
The next step replaces all variables by the symbol Ω yielding the following list of
anonymized triple patterns.

p1 = (Ω rdf:type db:city)

p2 = (Ω db:located db:Germany)

p3 = (Ω db:name Ω)

p4 = (Ω db:located Ω)

p5 = (Ω db:population Ω)

p6 = (Ω rdf:type Ω)

p7 = (Ω db:revenue Ω)

p8 = (Ω db:name "Apple")

The corresponding global query graph G(QL) is depicted in Figure 5. Additionally
the following statements about QL and G(QL) are true:

• q1, q2 and q3 are witnesses for p1 because they contain the triple pattern
p = (?s,rdf:type,db:city) and ω(p) = p1. The weight of p1 in G(QL) is 5,
because the sum of the frequencies of all witnesses for p1 is 5.

• q1 is a join witness for the anonymized patterns p1 and p2 because q1 is
a witness for both the joining triple patterns r1 = (?s,rdf:type,db:city) and
r2 = (?s,db:located,db:Germany).
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• Qp1,p2
l = {q1, q3} defines the set of join witnesses for p1 and p2. It means the

edge between p1 and p2 in the global query graph G(QL) has weight 4, the
sum of the frequencies of q1 and q3 in the query load.

Figure 5: Global query graph G(QL) for Example 6

3.3 Fragmentation

The fragmentation routine leverages the fact that RDF data can be organized in
a relation with three columns, so that triples are seen as a set of rows with three
attributes: subject, property and object. This allows to apply standard methods for
fragmentation in relational databases. These techniques are in general quite efficient
and scalable because their complexity does not depend on the size of the data, but
on the size of the query load, which is normally smaller. Even though they require
some insight about the characteristics of the data, they can rely on summarized
statistics which makes them feasible for ever-growing datasets and changing query
loads where repartioning is required from time to time.

Given a query load QL(Ql, Fl), we will now define predicates for splitting a triple
store T into disjoint sets of triples. Following standard procedures for horizontal
fragmentation of relations [11,45], we will first define simple predicates which constrain
only one of subject, property, object of triples, and combine them to minterms, which
are then used to build the set of fragmentation predicates. In the following, we
describe the process in detail and provide formal definitions.

Definition 11. A simple predicate is a boolean expression of any of the following
classes: a = const, a op const, isIRI(a), isLiteral(a), isBlank(a), regex(a, literal),
langMatches(lang(a), literal), datatype(a) = uri where a ∈ {subj, prop, obj}, op ∈
{<,≤,≥, >}, const ∈ (U ∪ L), literal ∈ L and uri ∈ U

Three major classes of simple predicates can be identified from Definition 11. The
class of predicates denoted by a=const defines an equality test on any of the three
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columns with a constant value, either a literal or a URI. Examples of this class
are property=db:located or object=db:Germany. The class a op const includes
predicates like object<109^^xsd:integer. The latter classes are based on built-
in SPARQL functions20. Examples are langMatches(lang(object) = "ES"), and
regex(object,"sig"), but not more complex expressions such as subject=object.
It is important to mention that the latest implementation of Partout sup-
ports all the aforementioned classes of simple predicates except isBlank(a) and
regex(a,literal). Moreover, simple predicates like object<109^^xsd:integer
require support for data types. So far, only the basic XML Schema21 data types like
integer, decimal, boolean, string, and double are supported .

To build the set S(QL) of simple predicates for the anomymized query load QL, we
consider both the anonymized triple patterns and the filter expressions. For each t ∈
Φ(QL), each position that does not contain Ω creates a corresponding simple predicate.
For example, when t=(Ω,bornIn,Germany), the simple predicates property=bornIn
and object=Germany are added to S(QL). Similarly, filter expressions are converted
to simple predicates if possible like described in Example 6.

Example 7. Consider the anonymized triple patterns extracted in Example 6.

p1 = (Ω rdf:type db:city)

p2 = (Ω db:located db:Germany)

p3 = (Ω db:name Ω)

p4 = (Ω db:located Ω)

p5 = (Ω db:population Ω)

p6 = (Ω rdf:type Ω)

p7 = (Ω db:revenue Ω)

p8 = (Ω db:name "Apple")

They produce the following simple predicates:

α1 = property=rdf:type

α2 = object=db:city

α3 = property=db:name

α4 = object=db:Germany
20For a detailed description of SPARQL builtins, refer to http://www.w3.org/TR/

rdf-sparql-query/#SparqlOps
21http://www.w3.org/TR/xmlschema11-1/
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α5 = object=db:name

α6 = property=db:located

α7 = property=db:population

α8 = property=db:revenue

α9 = object="Apple"

Additionally, consider the queries with filter conditions in the original query load:

q3 = ?s rdf:type db:city. ?s db:located db:Germany. ?s db:population
?p. FILTER(?r≤ 5× 106)

q5 = ?s db:name ?c. ?s db:revenue ?r. FILTER(?r≥ 109)

They produce the following simple predicates:

α10 = object≥ 109

α11 = object≤ 5× 106.

Example 7 illustrates the process of building the set S(QL) from the anomymized
triples patterns extracted from the query load. Filter conditions like in the example
are also sources of simple predicates; but some expressions like a comparison between
two variables are ignored because they usually involve comparisons between values
in different sets of bindings, i.e., more than one triple. Simple predicates are boolean
expressions meant to be evaluated on RDF triples. For instance, consider the RDF
triple (db:Berlin,db:located,db:Germany). It is clear for this example that the simple
predicate object=db:Germany evaluates to true whereas property=db:revenue
evaluates to false. However, there are triples for which the semantics of some
predicates are not properly defined. Consider the simple predicates object≥ 109 and
object< 109 and our previous example triple. In spite of being mutually exclusive
predicates i.e., they both cannot be true or false for the same triple, it is not clear
which of them evaluates to true or false. In order to deal with these problem
cases, ambiguous predicates are combined with other simple predicates to solve the
ambiguity. In general, simple predicates of the class a op const (op ∈ {<,≤, >,≥})
are combined with other predicates constraining the data type of the argument. In our
example object≥ 109, becomes datatype(object) = xsd:integer ∧ object≥ 109.
Note that by treating both predicates as a single unit, it is now clear that the triple
(db:Berlin,db:located,db:Germany) evaluates to false, whereas the negated predicate
datatype(object) 6= xsd:integer ∨ object< 109 evaluates to true.
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Since a triple store T can be seen as a relation with three columns, standard
techniques for fragmentation of relational databases can be easily adapted in this
scenario. Based on the theory of horizontal fragmentation described in [11,45], given
a set of simple predicates, we define the set M ′ of minterms which consists of all
conjunctive combinations of these simple predicates where some may be negated, or
formally

M ′ := {
∧

α∈S(QL)
α∗} (3)

where α∗ is either the simple predicate α itself or its negation ¬α. The number of
all possible minterms is exponential in |S(QL)| and when applied to a triple store
T , it defines a complete and non-redundant fragmentation of T with each minterm
defining a fragment, i.e., a set of RDF triples that match the boolean expression of
the minterm. If a fragmentation is complete then every triple in T matches at least
one minterm, whereas a non-redundant fragmentation implies that the intersection
between two different fragments is empty. Despite the exponential size of M ′,
many minterms actually define empty fragments because they contain contradicting
conditions. As an example consider two predicates like property=db:revenue and
property=db:name. It is clear that any minterm containing the positive versions of
those predicates is empty, as no triple can have both values as property. Moreover,
it is also possible for two different simple predicates to be completely correlated, i.e.,
they evaluate to true or false for the same subset of triples in T . In that case, one of
them is redundant and can be discarded without any impact on the fragmentation
defined by M ′.
Based on the previous analysis, it is possible to reduce the size of M ′ by (a)

eliminating all minterms that contain contradicting conditions and that are therefore
unsatisfiable and (b) omitting redundant (totally correlated) predicates in S(QL).
For this purpose we apply the optimal horizontal fragmentation algorithm proposed
in [16,19] which is described next.
In every iteration the algorithm considers a new predicate α ∈ S(QL) and tests

whether its addition makes a difference in the last produced fragmentation scheme
(line 8). Note that the initial fragmentation scheme consists of a single fragment
containing the whole triple store T . If the addition of a predicate does not change
the last fragmentation, it means this predicate is redundant and can be discarded.
Otherwise it checks if the previously added predicates became redundant due to
the inclusion of α (lines 10-18). Lines 5 and 12 build the set of all minterms for
a given set of predicates Q whereas lines 6 and 13 remove unsatisfiable minterms
which lead to empty fragments. property=db:revenue ∧ property=db:name is an
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1: Q′ ← ∅
2: Q← ∅; F (Q) = {T}
3: for all α ∈ S(QL) do
4: Q′ ← Q ∪ {α}
5: Determine M(Q′) from M(Q)
6: Remove unsatisfiable minterms from M(Q′)
7: Determine signature F (Q′) based on M(Q′)
8: if F (Q′) 6= F (Q) then
9: Q← Q′

10: for all β ∈ Q \ {α} do
11: Q′ ← Q \ {β}
12: Determine M(Q′) from M(Q)
13: Remove unsatisfiable minterms from M(Q′)
14: Determine signature F (Q′) based on M(Q′)
15: if F (Q′) 6= F (Q) then
16: Q← Q′

17: end if
18: end for
19: end if
20: end for
21: return M(Q)
Algorithm 1: Determines a complete and non-redundant fragmentation of a triple store

T using a minimal subset of simple predicates from S(QL)

example of such a type of minterms, since both conditions cannot hold for a triple at
the same time. Contradicting conditions are very frequent and their identification
requires some knowledge about the semantics of functions that may be called. As a
second example, consider the minterm isLiteral(object) ∧ isIRI(object). This
expression is also unsatisfiable because its simple predicates return true for disjoint
sets of triples. On the other hand, property=db:revenue ∧¬ property=db:name is
satisfiable.
Since the size of the set of minterms is exponential in the number of predicates,

the algorithm does not build it from scratch, but reuses previously constructed
minterm sets. Suppose that in a previous iteration the algorithm calculated the set
of satisfiable minterms M(Qk−1) for the predicates Qk−1 := {β1, β2, . . . βk−1}. When
considering the set of minterms for Qk := Qk−1 ∪ {βk}, it builds the new minterms
by combining the elements of M(Qk−1) with the positive and negative versions
of βk. That leads to 2|M(Qk−1)| new minterms; however some of them might be
unsatisfiable because they contain contradicting conditions, or simply empty because
of the distribution of the data. Lines 6 and 13 care about this.

To determine if two fragmentation schemes are equivalent, the algorithm compares
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their signatures. The signature of a fragmentation scheme denoted as F (Q) is a
sorted vector of |M(Q)| real numbers where each entry is associated to a minterm
m ∈M(Q) and the value is calculated as the product of s(m) · f(m) where s(m) > 0
is the size of the minterm: the number of triples in the triple store T that evaluate
to true. The access frequency f(m) denotes the number of queries in the query load
that access the RDF triples in the fragment. The following definition is aimed to
clarify how to calculate f(m).

Definition 12. Let T be an RDF triple store, m ∈ M a minterm and p ∈ Φ(QL)
an anomymized triple pattern. We say that m overlaps with p if there is at least one
triple in T that matches both m and p.

This concept is the key to calculate the frequency of access of a minterm and
therefore its signature entry. If a minterm overlaps with a triple pattern, then its
corresponding fragment contains RDF triples that are in the set of bindings of the
triple pattern, thus to answer any query including this triple pattern, the query
processor will have to access the triples described by the minterm. Based on this
rationale, the access frequency f(m) of m is the sum of the frequencies of triple
patterns from Φ(QL) that overlap with m. Example 8 illustrates the idea.

Example 8. Consider the simple predicates,

α1 = property=db:name

α2 = object="Apple"

the set of minterms generated by them:

m11: property=db:name ∧ object="Apple"

m10: property=db:name ∧ ¬ object="Apple"

m01: ¬ property=db:name ∧ object="Apple"

m00: ¬ property=db:name ∧ ¬ object="Apple"

and the anonymized triple patterns with their frequencies of occurrence in the
query load:

p1 = (Ω db:name "Apple") (12)

p2 = (Ω db:name Ω) (4)

p3 = (Ω db:revenue Ω) (14)
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It is clear that p1 overlaps only with m11 whereas p2 overlaps with both m11 and
m10 since it does not impose any restrictions on the object position. Additionally p3

overlaps with m01 and m00. Therefore, the frequency of access of m11 is calculated
as f(m11) = f(p1) + f(p2) = 12 + 2 = 16.

As mentioned before, the size of a minterm, denoted as s(m) is the number of
triples in T that match m. s(m) must be greater than zero and could be calculated
by evaluating m on each triple in T and counting the ones evaluating to true, but
that would be too expensive. Instead, we use statistics about the data and some
independence assumptions to estimate the cardinality of combinations of predicates.
They are described in detail in Chapter 5.2.

Finally, it is important to remark that the algorithm produces a minimal set of
predicates Q and a set of minterms M such that each m ∈M defines a non-empty
fragment Tm ⊆ T of the set of triples, consisting of all triples that satisfy the
minterm predicate m. Q is minimal because it does not contain redundant predicates.
Example 9 depicts a scenario where redundant predicates are discarded. Additionally,
the obtained fragments form a complete fragmentation of T because any triple is
assigned to exactly one fragment by construction of the minterms. For notational
simplicity, we will identify fragment Tm by its corresponding minterm m.

Example 9. Consider the simple predicates extracted in Example 7 from the query
load in Example 6. The dataset T contains 19500 RDF triples about 3000 cities and
2000 companies.

α1 = property=rdf:type

α2 = object=db:city

α3 = property=db:name

α4 = object=db:Germany

α5 = object=db:name

α6 = property=db:located

α7 = property=db:population

α8 = property=db:revenue

α9 = object="Apple"

α10 = datatype(uri) = xsd:decimal ∧ object≥ 109

α11 = datatype(uri) = xsd:decimal ∧ object≤ 5× 106.

36



Moreover, assume all the cities in the dataset have populations up to 4 × 106

inhabitants. In that case, the optimal horizontal fragmentation algorithm determines
that α11 is redundant because it is fully correlated to α7. As an example, consider the
possible set of minterms produced by Q := {α7}. It consists of only two fragments:
the triples with property value db : population and everything else, which we denote
as m1 and m0. Assuming the triple store contains populations for the 3000 cities
in the triple store, s(m1) = 3000. Additionally, f(m1) = 3 because m1 overlaps
with the triple pattern (Ω,db:population,Ω) whose access frequency is 3 according
to the global query graph in Figure 5. On the other hand, m0 overlaps with all
the other triple patterns yielding f(m0) = 38 and s(m0) = 16500. The signature
vector of this fragmentation scheme is the sorted vector [660000, 9000]. Now consider
Q := {α7, α11} which produces 4 fragments: m00,m01,m10,m11. Since α7 and α11

evaluate to true or false for the same set of triples, the signature components of m00

and m11 are the same as m0 and m1. Moreover it also implies that the minterms
m01 and m10 define empty fragments which by definition are not considered for the
signature. The addition of α11 does not change the signature vector, hence it is
redundant and removed by the fragmentation algorithm. This is true even if α7 and
α11 are part of more complex minterms containing other predicates. The optimal
horizontal fragmentation algorithm produces a minimal set of simple predicates to
build a set of non-empty fragments. Table 4 shows the output of the algorithm
where the result fragments are shown with their access frequencies (obtained from
the global query graph in Figure 5) and sizes. In every row, the symbol ζ is an
abbreviation for “all the other predicates are negated” (ζ := ¬αi ∧ αi+1 · · · ∧ α|Q|)

Table 4: List of non-empty fragments with their sizes and their access frequencies. The
last column corresponds to the signature of the fragmentation scheme.

Minterm Freq. Size Signature
m1 property=db:revenue ∧ ζ 14 1970 27580
m2 property=rdf:type ∧ obj=db:city ∧ ζ 5 3000 15000
m3 property=db:name ∧ ζ 2 4499 9998
m4 property=db:population ∧ ζ 3 3000 9000
m5 property=rdf:type ∧ ζ 1 2000 2000
m6 property=db:located ∧ ζ 1 1700 1700
m7 property=db:located ∧ obj=db:Germany ∧ ζ 5 300 1500
m8 property=db:revenue ∧ (object≥ 109∧

datatype(uri) = xsd:decimal) ∧ ζ
14 30 420

m9 property=db:name ∧ obj=Apple ∧ ζ 12 1 12
m10 ζ (Remainder fragment) 0 3000 0
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3.4 Fragment Allocation

Once fragments have been defined, they need to be allocated to the n hosts in the
cluster. The allocation has two possibly conflicting goals: (1) group fragments that
are joined together in queries to the same host in order to avoid communication cost
at query processing time and (2) balance the load among hosts. The load is defined
in terms of the amount of data assigned to the host as well as the number of queries
that are expected to hit it. To define the load L(m) attributed to a fragment m,
we consider the number of queries f(m) for which that fragment is accessed, and
assume that all s(m) triples of m are accessed for each such query. Consequently,
we get L(m) := f(m) · s(m) like in the previous definition for the signature of a
fragmentation scheme. Given a fragmentation M , the total load L on our system is
therefore

L :=
∑
m∈M

L(m) (4)

When the load is uniformly balanced over all n hosts in our cluster, each node is
assigned a load

U := L

n
(5)

Definition 13. Given a fragmentation M and query load QL, define the global
fragment query graph G(QL,M) as an undirected weighted graph which has all the
fragments m ∈M as nodes and an edge {a, b} if ∃ p, r ∈ Φ(QL) such that a overlaps
with p, b overlaps with r, and there is an edge {p, r} in G(QL); the weight w(a, b)
of the edge {a, b} is the sum of the weights of all such edges in G(QL) (i.e., the
number of queries that contain a join of triple patterns that overlap with a and b,
respectively).

The global fragment query graph is built from the global query graph introduced
in Definition 10 but unlike that graph, it encodes the join relationships between
the fragments and is used to achieve goal (1). Figure 6 shows the global fragment
graph for the fragments described in Table 4 using our example query load. Consider
fragments 5 and 7. The first one overlaps with the triple pattern (Ω,rdf:type,Ω)
whereas the second one overlaps with (Ω,db:located,Germany). As those patterns
join in the global query graph, an edge between fragments 5 and 7 is added with the
number of times the corresponding triple patterns join in the query load. Note also
that a triple pattern can overlap with more than one fragment. That is the case of
fragments 1 and 8 with the pattern (Ω,db:revenue,Ω).

The allocation problem in our scenario can be formulated as an ILP (Integer Linear
Program), described in Appendix A.2, whose solution provides an optimal allocation
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Figure 6: (a) Global query graph from Example 6. (b) The global fragment graph for
fragments in Table 4 built from the join relationships in (a). Overlapping triple patterns

and fragments have the same color.

of the fragments described by M . Nevertheless, this is a hard problem as ILPs are
NP-Complete [5] and therefore infeasible for a large number of fragments and hosts.
For this reason, we have designed a straightforward greedy algorithm which runs in
O(n|M |) assuming the fragmentation routine outputs the fragments in descending
order by their load L(m). Instead of finding an optimal solution, our strategy iterates
over each fragment and allocates it to the most promising or beneficial host at that
moment based on the aforementioned requirements.
We denote the set of fragments assigned to host h as Fh, and the current load of

host h as CLh := ∑
m∈Fh

L(m). Initially, no fragments are assigned to any host, so
Fh = ∅ and CLh = 0 for all hosts h.

We can now define the benefit of allocating a currently unallocated fragment m to
host h as

benefit(m,h) := 2 · U
U + CLh

· [1 +
∑

m′∈Fh

w(m,m′)] (6)

where U is the expected load each host should receive in a totally fair scenario. The
first part of this definition gives higher benefit for allocating a fragment to a host
which is currently under-loaded, i.e., its current load CLh is smaller than U , and
reduced benefit for already overloaded hosts. This addresses goal (2). The second
part of the definition addresses goal (1) by increasing the benefit when allocating a
fragment to a host containing other fragments that join frequently with it. w(m,m′)
denotes the weight of the edge between fragments m and m′ in the global fragment
graph. The +1 avoids a zero benefit when the host does not contain any fragment
that joins with the fragment to be allocated so that the host’s current load is not
ignored.

For allocating fragments to hosts, Partout uses the following greedy algorithm:

• Fragments are allocated in descending order by their load L(m).
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• The first fragment (also the one with the highest load) is assigned to the first
host.

• For every fragment except the first one, the benefits of allocating it to every
host are calculated. The fragment is then assigned to the most beneficial host.

Example 10 shows the result of allocating the fragments described in Table 4 in 3
hosts.

Example 10. Consider the fragments described in Table 4, their global fragments
query graph in Figure 6, and a cluster with 3 hosts, h1, h2 h3. L(m) = 67210 so that
a perfectly balanced scenario would assign a load of U = 22403.33 to each host. The
algorithm allocates m1 in h1. The next step calculates the benefit of allocating m2 in
every host, sincem1 has been assigned to h1, its current load is CL1 = L(m1) = 27580.
The calculation for the benefits outputs benefit(m2, h1) = 0.8964, benefit(m2, h3) =
benefit(m2, h3) = 2, therefore m2 is assigned to h2. In the same way the benefits
of assigning m3 are benefit(m3, h1) = 0.8964, benefit(m3, h3) = 2 but since m3

joins with m2 according to the fragment, the formula considers the weight of the
edge between m2 and m3 which raises the value to benefit(m3, h2) = 3.594. Thus,
m3 goes to h2 again. Following the same process for all fragments, the allocation
described in Table 5 is achieved.

Table 5: Allocation of fragments to hosts in the example
Host Fragments Load
1 m1, m9 27592
2 m2, m3, m7, m8 26918
3 m4, m5, m6, m10 12700

The final step of partitioning must build the actual partitions with the triples
from a triple store T . A partition is a set of fragments allocated to the same host.
The construction of the different partitions implies to scan the triple store to build a
global dictionary of strings (i.e., URIs and literals) and a unique mapping of these
strings to integer ids, and distribute this mapping to all hosts. At the same time, each
RDF triple in T is evaluated against the fragments definitions (minterms) in order to
determine the host this triple belongs to. Even though the number of actual fragments
is normally far smaller than 2|S(QL)|, it can be large anyway. If the output of the
optimal horizontal fragmentation algorithm determined a minimal set of predicates
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Q for fragmentation, then the triple distribution phase takes O(|T | · |M | · |Q|) since
in the worst case, the triple has to be evaluated against the |Q| predicates in the
definition of every fragment m ∈M . In order to reduce the amount of evaluations, a
definitions summary summh is calculated for every host h so that triples are most of
the times, only evaluated against this summary. As all minterms are expressed in
terms of the same base predicates, define sm(m) as the bitvector representation of
minterm m where a 1 at the i-th position, means that the i-th predicate appears in
its non-negated version, and 0 means it is negated. We also define a bitwise operator⊕ which operates over the bitvector representations of all the fragments m ∈ Fh.

summh =
⊕
m∈Fh

sm(m) (7)

Example 11. Assume a fragmentation and allocation with 4 simple predicates.
Further assume that three fragments with bitvector representations 1001, 0001, and
0011 were assigned to certain host. The summary summh is:

(1001)⊕ (0001)
(0011)

( ∅0∅1) (8)

It means the predicates in positions 1 and 3 (from right to left) are decisive and
therefore any triple belonging to this host must evaluate to true for the predicate
at position 1, and false for predicate at position 3. If it does, then the triple is
evaluated against all minterms, otherwise it does not belong to this host.

If all the bits at position i have the same value, then the result is that value,
otherwise a “don’t-care“ symbol ∅ is output. If the ith position of the host summary
does not contain ∅, it means all the fragments allocated to this host contain this
predicate in the same form and therefore the predicate is decisive. Every triple is
then evaluated against the decisive predicates and if it does not match any of them,
it can be directly discarded from this host. On the other hand, this approach can
produce false positives (e.g a summary containing only ∅ is the trivial example). In
such a case, the triple has to be evaluated against every fragment in Fh to determine
whether it belongs to host h or not. Example 11 depicts this scenario.
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3.5 Avoiding Imbalance

The construction of minterms based on predicates occurring in queries produces one
minterm that contains all predicates in their negated form, i.e., the corresponding
fragment contains all triples that do not match any of the simple predicates contained
in the queries of the training data set. In many cases, this “remainder” fragment
is much bigger than all the other fragments and would lead to a highly imbalanced
usage of storage space at the sources. Thus, in case it is significantly bigger than the
other fragments, we need to split it up into smaller pieces and assign them to other
partitions.
To integrate this consideration into the implementation, all fragments but the

remainder fragment are assigned as described in Section 3.4. Afterwards, a hash
partitioning is applied to assign the triples of the remainder fragment to partitions.
The reason is that, for all the other fragments a global query optimizer can efficiently
decide on their relevance for a query by comparing the fragment definition to the
predicates contained in the query. In any other case, the optimizer has to use
statistics or query all available fragments. In the latter case, the decision whether to
ask two or all fragments of roughly the same sizes does not really influence response
time because queries are processed in parallel at different hosts whereas querying a
much bigger fragment would increase response time. Moreover, other very simple
approaches like fragmentation by property are also applicable to this scenario. The
remainder fragment could be partitioned by property and the obtained fragments
assigned to hosts using Partout’s allocation routine with a slight modification in
the formula for the load. As the access frequency of these fragments is undefined, the
load could be expressed only in terms of the fragment size. The advantage of this
method is that untrained triple patterns (assumming they have bound properties)
will hit always a single host. However joins of unknown triple patterns will involve
many remote transmissions since properties have normally low selectivity and nothing
guarantees the joining bindings for such triple patterns will be in the same host. On
the other hand, this approach introduces some risks for load balancing because the
assignment of fragments to hosts does not consider access frequencies, therefore a
host might end overloaded with requests if its assigned properties become popular in
the query load. For those scenarios, hash partitioning guarantees a fairer distribution
of the load for unknown queries.
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4 Distributed Query Processing

Having solved the problem of fragmentation and allocation in the previous chapter,
efficient query processing in a top-down distributed setup requires an appropriate
global optimizer which given a query in SPARQL produces a good plan according
to a cost model. Partout’s global optimizer is built on top of RDF-3X [42],
one of today’s most efficient centralized triple stores whose query planner and cost
model are proven to produce efficient execution plans in terms of response time.
Nevertheless, RDF-3X’ optimizer is not fully applicable to our scenario because it is
designed for centralized execution, hence it does not consider communication costs.
In this chapter, we briefly describe the RDF-3X architecture in order to introduce
our system model and the general setup of software components, and then provide
details about our two stages optimization which starts with an RDF-3X plan suitable
for centralized execution and then optimizes it for a distributed environment.

4.1 RDF-3X

Partout is built on top of RDF-3X, a native engine for management of RDF
data. This system stores triples as a huge relation with three columns S, P , O. In
order to provide efficient retrieval, it relies on heavy indexing. There are indexes for
every single column (Fully Aggregated) as well as for all the permutations of two
(Aggregated) and three columns (Facts). Additionally it uses selectivity histograms
to store estimations for the cardinality of joins between triple patterns. Indexes and
histograms use unique integers to represent the actual strings and the mapping string-
to-integer is stored in a dictionary. Update management is handled by batching
operations and incremental indexes that store the modifications before they are
merged to the actual indexes. The query processor uses a bottom-up dynamic
programming algorithm [44] to find good query plans in terms of response time, and
explores both linear deep and bushy trees. Linear deep trees are operator trees with
index scans as leaves and binary join operators that have at least one index scan as
input, whereas for bushy trees, the inputs of a join can be intermediate results from
other operators.
The physical plans use pipelining and implement merge, hash, and nested loop

joins. Pipelining means an operator will report results to the next operator in the
tree hierarchy as soon as it has a result.
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Figure 7: System Model of Partout’s query processor

4.2 System Architecture

Figure 7 depicts our system model. Two major components can easily be identified.
A central coordinator and a cluster of n hosts or slaves in charge of a subset of
the data which we call a partition. A partition is the union of all the fragments
assigned to a host by the allocation routine. Queries are issued at the central
coordinator that stores all relevant information required for query planning like the
partitions descriptions, the assignment of fragments to hosts, and data statistics.
The slaves are identical process instances whose only responsibility is to execute the
subquery plans assigned to them by the coordinator over their subset of the data.
The two components have clearly defined and non-overlapping responsibilities and
are implemented on top of the RDF-3X engine.

4.2.1 The Coordinator

The coordinator is a program that takes a SPARQL query as input, generates a
query plan for the distributed setup, sends it to the slaves, and outputs the query
results once they are computed. It does not have direct access to the actual data
but instead uses a global statistics file generated at partitioning time, which we call
the metastore. This is an SQLite database storing all information required for query
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Figure 8: The metastore schema

planning, including:

• Fragment definitions and host mappings. Information about how the fragments
were created and which hosts they were assigned to.

• String dictionary. with the unique string-to-integer mapping used in all hosts.

• Statistics. The coordinator stores information about the cardinalities of the
normalized triple patterns extracted from the query load and later used for
partitioning. It also contains information about the join cardinalities for such
triple patterns. These statistics are required by the cost model to estimate the
time to evaluate the different operators in the query plan.

Figure 8 shows the relational schema of the metastore. Relations Predicate,
Argument, Host and PredicateHost encode the fragments allocation information. The
first two contain information about the simple predicates output by the optimal
horizontal fragmentation algorithm introduced in Chapter 3. A simple predicate like
object = Germany would produce a register in the Predicate relation (position =
object, operator = Equal) , whereas the string Germany corresponds to a row in the
table Argument. The two latter relations store information about the hosts and how
the predicates combined as minterms were assigned to them. As an example, consider
two hosts h1 and h2 and two simple predicates p1 and p2 with their four possible
fragments: {p1, p2}, {p1,¬p2}, {¬p1, p2}, {¬p1,¬p2}. Furthermore assume the two
first minterms were assigned to h1. This assignment would produce the following
records in the PredicateHost relation: (p1, h1, true), (p2, h1, true), (p2, h1, false) as
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p1 appears always in normal form, but p2 appears both in its normal and negated
forms. Likewise if the remaining minterms were assigned to h2, it would produce the
registers (p2, h1, false), (p1, h2, false), (p2, h2, true), (p2, h2, false).
The dictionary table stores the string-to-integer mapping using the same data

schema of RDF-3X. Those integers are used everywhere to refer to a string ocurring
in the triple store.

The statistics are split among several relations. The tables with prefixes "AS" and
"FAS" correspond to the Aggregated and Fully Aggregated Indexes implemented
in RDF-3X and store the cardinalities of the normalized triple patterns extracted
from the query load. Relations with the suffix "H" like FASPredicateH or ASProp-
ertyObjectH store the cardinalities of the triple patterns per host: FASPredicateH
for patterns with only bounded property like (Ω,bornIn,Ω) whereas ASPropertyOb-
jectH refers to patterns with bounded property and object like (Ω,bornIn,Germany).
This information is precisely obtained at partitioning time. Suppose that for the
normalized triple pattern (Ω,bornIn,Ω) the partitioning routine found there are
1000 bindings in h1 and 500 in h2, the aggregated values for the whole dataset are
stored in the view FASProperty as a tuple ((string2integer(bornIn), 1500) where
string2integer denotes the integer identifier for the string bornIn in the dictionary.
In the same way, relations FASSubject, FASProperty, ASSubjectProperty, ASSubjec-
tObject and ASPredicateObject are views aggregating the counts for triple patterns
among the hosts.
The Statistics relation on the other hand, contains the join statistics for the

normalized triple patterns in the whole dataset and uses the same schema as the
RDF-3X selectivity histograms to estimate the cardinality of joins 22.
Finally, the Metadata relation contains aggregated information about the total

number of triples as well as the total number of RDF-3X data pages per type of
index (Facts, Aggregated and Fully Aggregated) in the whole system.
It is worth remarking that the metastore includes only statistical information

relevant to the triple patterns found in the query load in order to keep the file
size as small as possible, i.e., it fits to main memory. Note also that it stores
statistical information about both the entire dataset and the partitions because
they are necessary for the two steps of the query planning process, first producing
a plan aimed for a centralized triple store and then optimizing it for distributed
execution. Additionally, if statistical information about a triple pattern unknown
to the metastore is needed, the query processor relies on RDF-3X default behavior
on the absence of such information, which is an optimistic approach that normally

22For more details refer to the section 6.1 of [44]
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assumes a value of 1 for the cardinality of triple patterns. However, this fact does not
prevent the query processor to gather more statistics from the slaves, as new queries
are issued. If the coordinator gets a new triple pattern such that all its derived
simple predicates are not in the metastore, it means this triple pattern overlaps with
the remainder fragment which is splitted up among all hosts. In order to get an
estimation for the number of bindings of such a triple pattern, it will have to ask every
host about how many matches they have estimated. Moreover, if the coordinator
has contraints in terms of storage space, it could use the metastore schema as a sort
of cache for relevant information like statistics and string mappings. For example, it
could initially store the string-to-integer mappings only for the constants ocurring
in the query load and forward lookup requests for unknown constants to the slaves
as the partitions are normal RDF-3X files which are able to provide any piece of
metadata about the triples contained there.

4.2.2 The Slaves

The slaves are lightweight server processes running at different machines and listening
for execution requests coming either from the coordinator or from other slaves. They
are always associated to a partition from the original database and are bound to
a host name and a port. A partition is a standard RDF-3X file with a single
peculiarity: it uses a shared string-to-integer mapping among the other partitions,
rather than building a new one as the standard RDF-3X tool for data import would
do. The execution requests consist of serialized parts of a query plan, which the
slave deserializes and executes. Slaves do not waste time on local query optimization
because the coordinator has all necessary statistics to optimize the query completely.
Slaves send results to their requestors in pages of 1024 values.

4.3 Global Query Optimization

The global query optimizer uses the information stored in the metastore to generate
a cheap plan according to a cost function. Traditionally, cost models for query
execution are expressed with respect to either the total time or the response time.
The total time is the sum of all possible time components, even if they are supposed
to run in parallel. Therefore, it is a measure to quantify resource consumption.
On the other hand, the response time measures the latency of answering a query
with two existing variants: (a) time until the first result are output and (b) time
until the last result is output [45]. Although a centralized cost model for RDF data
might optimize for response time (e.g. the RDF-3X cost model), it is not directly

47



applicable to a distributed environment because it does not consider communication
costs, which have a significant impact in such environments.

Partout’s global query optimization algorithm avoids exhaustive search as
determining costs for all possible plans would be too expensive in a distributed
environment. Therefore, it applies a two-steps approach that starts with a plan that
is optimized with respect to cardinalities and selectivities from the whole triple store
and applies heuristics to make the plan more efficient in the distributed environment.
As the RDF-3X optimizer is known to produce efficient query execution plans, we
use such a plan as the start point for our optimization process. RDF-3X cost model
defines the cost of a query plan in terms of the response time until the last result
is produced. In the remainder of this chapter, we will first discuss the RDF-3X
optimizer and highlight the differences with our system. After having introduced
Partout’s distributed cost model, we will show how these components work
together to find an optimized query execution plan for the distributed setup.

4.3.1 Initial Query Plan

Partout builds upon and extends query plans used in RDF-3X. This system stores
triples in relations with all possible permutations of S,P , and O (SPO, SOP , PSO,
POS, OSP , OPS) which are called Facts Indexes. Additionally, RDF-3X maintains
indexes with aggregated counts for all possible permutations of two attributes (SP ,
SO, PS, PO, OS, OP ) and one attribute (S, P , O) which we call the Aggregated
and Fully Aggregated Indexes. RDF-3X’ query optimizer uses a bottom-up dynamic
programming algorithm which finds an optimal solution for a big problem, i.e., the
whole query, based on the optimal solutions of its subproblems, i.e, parts of the query.
It first seeds a table with the index scans for the base relations that correspond to the
query triple patterns. The type of index depends on whether all the variables will be
needed afterwards. For example, if a variable in a triple pattern is not used anywhere
else, the optimizer will choose Aggregated or Fully Aggregated indexes. Note that
projections conceptually preserve the cardinality because aggregated indexes store
the counts for the combinations of values. Starting with the seeds, a set of larger
plans is created by joining optimal solutions of smaller problems. Those larger
plans correspond, for example, to all possible orders to join a set of triple patterns.
Then the RDF-3X cost model uses the statistics contained in the aggregated indexes
and selectivity histograms to estimate the response time of those plans and prune
the ones with high estimated response time. It is important to mention that in
Partout, those statistics do not come from a standard RDF-3X file but from the
metastore built at partitioning time. Figure 9(a) shows an example query and the
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corresponding start plan obtained by the RDF-3X optimizer using the statistics in
the metastore.
URIs and string literals are mapped to unique integer ids which are used in all

indexes. Leaf-level operators in query plans are therefore index scans corresponding
to triple patterns in the query. The triple pattern (?s,rdf:type,db:city) results in a
scan of the POS facts index, retrieving matching subjects in increasing id order.
This is exploited for join operators which are implemented by cheap merge joins
whenever the two inputs are ordered by the join attribute; if that is not the case, a
hash join is applied.

4.3.2 Distributed Cost Model

For reasons of compatibility to the initial plan, Partout reuses the RDF-3X cost
model and extends it with the aspect of communication in distributed systems.
Physical plans in RDF-3X use pipelining whenever possible. The only exception

to this rule are pipeline breakers, such as the sort operator, that need to read the
complete input before producing the first result.

In distributed systems, it would be too expensive in terms of the number of messages
to send each tuple immediately to another host. Thus, to minimize communication
costs, Partout batches data transfers between hosts in pages of 1024 results. The
benefit of batching results is especially significant for non-selective queries because in
these cases communication costs are the most important factor in the response time.

To compare different execution plans, we need a cost function c(plan) that describes
the execution costs for plan plan. The cost c(plan) of a plan is determined by the
cost c(RootOp) of its root operator:

c(plan) = c(RootOp) (9)

The cost of an operator op consists of its execution cost xc(op) (the estimated
response time to evaluate it, which can be estimated by the RDF-3X optimizer), the
costs of its child operators (because of exploiting parallelism in combination with
response time, we only need to consider the maximum of all children), and possibly
the cost tc(x, op) to transfer the results from the child operators (potentially located
in other hosts):

c(op) = xc(op) + max
x∈children(op)

(tc(x, op) + c(x)) (10)
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We can estimate the cost to transfer results from operator x to operator op by

tc(x, op) =

tpage ·
⌈
excard(x)

1024

⌉
;hh(x) 6= hh(op)

0 ; otherwise
(11)

Here, hh(op) denotes the home host of an operator and excard(op) is the expected
output cardinality of operator op as estimated by the RDF-3X optimizer. We assume
that communication costs for one page of data are symmetric, constant, and equal
to tpage, which has to be empirically measured for a specific setup. Still, tpage can be
easily replaced by more complex models and therefore adapted to environments with
heterogeneous network topologies and distances between hosts.

4.3.3 Query Planning

The first stage of Partout’s two-steps query planning is to generate a start plan
based on the statistics for the entire dataset provided by the metastore. For this
purpose, Partout uses the RDF-3X optimizer [44]. Leaf nodes represent index
scans that correspond to triple patterns contained in the original query. In contrast
to centralized systems, the triples matching these graph patterns are spread across
the hosts in the distributed setup. Thus, we need to determine the hosts that are
relevant to the leaf node scans. We call this process, the multiple sources resolution
phase.
A host may provide results for a triple pattern if the pattern overlaps with at

least one minterm of a fragment allocated to that host according to the metastore.
Figure 9(b) shows an example query with its start plan, where each leaf operator
is annotated with the hosts that may contain relevant triples for it. 9(c) shows
the pieces of information in the relation PredicateHost of the metastore used to
determine that the predicates implied by the index scan overlap with a fragment
allocated at some host. If there is only a single relevant host for a leaf operator, the
scan is exclusively executed at that host. If there is more than one relevant host, the
operator is executed at each host and their results are combined through a chain of
binary merge-union (BMU) operators as illustrated in Figure 9(d). A BMU operator
takes two sorted inputs and merges them preserving sort order.
On the other hand, index scans for triple patterns whose implied predicates are

not known by the metastore do always hit the remainder fragment which according
to the policy for the avoidance of imbalance discussed in Chapter 3.5, overlap with
all hosts since their triples were uniformly distributed among all the partitions.

After the multiple sources resolution phase, the optimizer will apply a set of trans-
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Figure 9: (a) A start execution plan. (b) The same plan annotated with relevant hosts
for leaf operators. (c) The mappings in the metastore that determine the relevant hosts
in this example (d) Resulting execution plan after replacing scans on multiple hosts with

chains of binary merge union operators.

formations to the obtained plan in order to produce a perhaps new and cheaper plan
in terms of response time. For this purpose, it defines two types of transformations,
DJ and AHH.

The DJ(rootOp) (for Distribute Join) transformation intends to exploit parallelism
by distributing joins in the following manner: (i) identifying joins in the hierarchy
rooted at rootOp with leaf scans as inputs and at least one of them relevant to several
hosts (ii) adding a MergeJoin operator for each combination of index scans in the left
and right sides of the join and (iii) combining partial results with binary merge union
(BMU) operators. Especially for non-selective queries with many intermediate results,
DJ can significantly reduce response time because many tuples can be processed in
parallel. Figure 10 (b) shows the effect of the DJ transformation on our example
query. It shows how the input subtrees of a Merge Join operator are distributed in
order to increase parallelization.
The second transformation named AHH(RootOp, host) (for Assign home host),

sets host as home host of RootOp which means the operator will be evaluated at that
place. The argument host is the identifier of a host in the cluster. AHH is normally
applied to the root operator in the query plan in order to assign an evaluation place
to the non-leaf operators in the tree. Its pseudocode is described in Algorithm 2. It
works recursively, by first traversing the tree downwards until the leaves have been
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Figure 10: (a) Example query plan (b) The result query plan after the application of the
DJ (c) The result after the application of AHH(RootOp, h1).

reached and collecting their home hosts which were assigned during the multiple
sources resolution phase. Lines 3-8 illustrate this first step. Then the algorithm goes
up and tries to assign the argument host as the home host to each inner node in the
operator tree, respecting this heuristic: An operator can be evaluated only at one of
the home hosts of its children. If the argument host is not in the set of home hosts
of the children, then the host incurring in fewer data transmissions is picked. This is
achieved by selecting the host of the operator with the biggest expected cardinality
according to the RDF-3X cost model (lines 16 and 17). This heuristic has however
an exception. BMU operators are allowed to be evaluated in a host which is not in
the set of home hosts of their children; as a general rule, all the BMU operators of a
chain are evaluated at the same host, which is the host of the parent operator (e.g a
join) of the top BMU in the chain (lines 19-24). This exception is aimed to avoid
unnecessary transmissions as all the data relevant to an index scan is transmitted
once and collected in parallel at the same place where it will be processed. The
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AHH returns true if at least one of the leaves had already the argument host as its
home host. Figure 10(c) shows the effect of applying AHH with host h1 as argument
to the query plan in 10(b).

1: relevantHosts← {}
2: bmus← {}
3: if rootOp.isLeaf() then
4: return rootOp.homeHost = host
5: end if
6: for childOp ∈ rootOp.children do
7: outcome← outcome ∨ AHH(childOp, host)
8: relevantHosts = relevantHosts ∪ {childOp.homeHost}
9: if childOp.type = BMU then

10: bmus← bmus ∪ {childOp}
11: end if
12: end for
13: if host /∈ relevantHosts then
14: outcome = outcome ∨ false
15: if bmus = ∅ then
16: highestCardOp← findHighestCardOperator(rootOp.children)
17: rootOp.homeHost← highestCardOp.homeHost
18: else
19: if |bmus| = 1 then
20: rootOp.homeHost← bmus[0].homeHost
21: else
22: highestCardOp← findHighestCardOperator(bmus)
23: rootOp.homeHost← highestCardOp.homeHost
24: end if
25: end if
26: else
27: rootOp.homeHost← host
28: return true
29: end if
30: return outcome

Algorithm 2: AHH(rootOp, host) tries to assign host as the evaluation place for the
query plan rooted at rootOp.

The query planning routine in Algorithm 3 proceeds in a greedy manner. It starts
with a query plan whose leaves have already a home host. At each step, it applies a
transformation (AHH or DJ) to obtain a new plan. If the transformation improves
the response time according to the cost model, the algorithm takes it. If k is the
number of relevant hosts for the all the leaves of the plan, the algorithm will try
AHH k times, one per relevant host. Then if DJ is feasible, it is applied and if it
improves the response time, a second round of k AHH transformations is scheduled.
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relevantHosts← startP lan.getRelevantHosts()
for host ∈ relevantHosts do
transformations ∪ {AHH(host)}

end for
transformations← {}
if startP lan.appliesForDJ() then
transformations ∪ {DJ(rootOp)}
for host ∈ relevantHosts do
transformations ∪ {AHH(rootOp, host)}

end for
end if
currentP lan← startP lan
for transform ∈ transformations do
newPlan← applyTransformation(currentP lan, transform)
if cost(newPlan) < cost(currentP lan) then
currentP lan← newPlan

else
if transform = DJ then
break

end if
end if

end for
return currentP lan

Algorithm 3: SearchCheapPlan(startPlan) applies a set of transformations to startPlan
in order to find a new query plan with the lowest cost.

4.4 Query Execution

Query execution in Partout consists of two phases. The preparation phase where
the obtained query plan is recursively transmitted from the coordinator to the slaves,
and the execution phase where the data is again recursively retrieved and shipped to
the coordinator.
The coordinator starts the preparation phase by serializing the obtained query

plan and sending it to the home host assigned to the root operator. This home
host, in turn, deserializes the received message and converts it into an executable
physical plan. If one of the received operators is assigned to another home host, the
subtree rooted by this operator is replaced with a Remote Fetcher operator that
will later receive results for the subtree. The subtree itself is serialized and sent
to the indicated home host, which instantiates a Remote Sender operator at the
root of the received query plan that will send all obtained results for the subtree to
requestor host. This procedure is repeated whenever the received subplan contains
operators assigned to other hosts. Every recipient will recursively report success
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Figure 11: Example plan after solving the remote edges through pairs of sender/fetcher
operators.

to its requestor (including the coordinator who initiated the process) as soon the
operation is completed.
Once all the operators in the query plan have reached their home hosts, the

coordinator sends an execution request to the home host of the top operator which
recursively propagates the request to all the slaves hosting subtrees of the query plan.
The results for the root nodes of such subtrees are forwarded to other hosts according
to the corresponding Result Sender operator when either one page of results is filled
or all results have been generated. At the end, the coordinator has received all the
results for the query. Figure 11 illustrates the query execution plan that we obtain
for our example query.
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5 Implementation

Partout consists of three software components which are built on top of the
RDF-3X engine. They are a query load aware partitioner and allocator, a query
coordinator and a slave server. The two latter correspond to the coordinator and slave
components already introduced in Chapter 4. This chapter is intended to describe the
implementation of those components, the most relevant challenges addressed during
their development and how they interact with the RDF-3X engine implementation.

5.1 The RDF-3X distribution

Partout’s development was based on the version 0.36 of RDF-3X available at
http://code.google.com/p/rdf3x. An RDF-3X triple store is a single binary file
containing the data, indexes and statistics on top of a fully native and efficient
storage implementation. An RDF-3X file is divided into internal database partitions
which we call regions to avoid confusion with our previous definition of partition.
Each region contains a set of segments, the building blocks of an RDF-3X database.
Every index in the triple store is associated to a segment which is internally im-
plemented as B+ tree divided in data pages and provides a simple programming
interface through a public class and a set of methods. This includes the Facts,
Aggregated and Fully Aggregated indexes (accessible through the classes FactsSeg-
ment, AggregatedFactsSegment and FullyAggregatedFactsSegment), the selectivity
histograms (StatisticsSegment class) and the strings dictionary (DictionarySegment
class) which is internally compounded of two subcomponents, for string-to-integer
and integer-to-string lookups. All indexes use the unique integer identifiers assigned
to every string at the database construction and stored in the strings dictionary.

From the user point of view, the RDF-3X distribution provides a set of programs
for the most important tasks of RDF data management. We can mention:

• rdf3xload: It is a simple utility that takes one or more files containing a set of
RDF triples in the N3 format (Notation 3) 23 and generates a RDF-3X triple
store file.

• rdf3xquery: This program takes a RDF-3X triple store and a text file con-
taining a query and outputs the results. Additionally, it provides a very simple
command line interface to execute queries in a interactive way. There also exist
a feature to print the query execution plan without running it.

23http://www.w3.org/TeamSubmission/n3/
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• rdf3xdump: It does the opposite to rdf3xload. Given a RDF-3X triple store
file, it outputs all the triples in N3 format.

The distribution includes many other tools targeted for developers; however the
three aforementioned utilities provide the core functionality of a database management
system and are relevant to the development of Partout. All the programs in
the RDF-3X distribution rely on a common set of classes or API which provides
features for SPARQL and N3 parsing, query planning, query execution, data storage
and retrieval (the segments classes) and basic concurrency control. Our system uses
thoses classes intensively. RDF-3X runs in Windows and GNU/Linux for 32 and 64
bits, however it is strongly recommended by the author to use it on 64 bits platforms
for big datasets.

5.2 Query Load Aware Partitioner and Allocator

The utility qloadpartitioner is a program which takes a RDF-3X triple store, a query
load and the number of hosts in the cluster n as input and outputs the metastore for
the coordinator 24 and n disjoint partitions, each one associated to a different slave.
The metastore is a relational SQLite database 25, whereas the partitions are regular
RDF-3X triple store files generated with a tweaked version of the rdf3xload utility.
The query load can be provided as a set of files containing dbpedia access logs or
plain SPARQL SELECT queries. Since query loads for running systems can be huge,
qloadpartitioner samples it randomly using Reservoir Sampling [64], a technique
designed to sample data streams whose size is unknown or very big. It is worth
mentioning that before accepting a query in the sample set, the partitioning utility
verifies if it is representative, which means the query could potentially have results
because all its constants have entries in the strings dictionary. qloadpartitioner uses
the RDF-3X classes for parsing SPARQL to build the query graph and then invokes
the static analysis feature that lookups constants and detects unsatisfiable queries in
advance.

The next step extracts simple predicates from the triple patterns and filter condi-
tions of the surviving queries (now transformed into query graphs) and use them
to feed an implementation of the optimal horizontal fragmentation method de-
scribed in Chapter 3. This algorithm relies on statistics about the sizes of gen-
erated minterms which are obtained through an extension of StatisticsSegment

24See Chapter 4.2.1 for more details
25http://www.sqlite.org/
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class which provides a set of methods to estimate the cardinalities for triple pat-
terns and joins which in behind uses classes FactsSegments, AggregatedFactsSeg-
ment and FullyAggregatedFactsSegment. In particular there is a method to get
cardinality of an arbitrary combination of constants (which define a triple pat-
tern): getCardinality(subject, predicate, object). For example, the size of the frag-
ment represented by the minterm property = const1 is obtained through a call to
getCardinality(0xFFFF, string2integer(const1), 0xFFFF ) which internally does
a lookup in the P Fully Aggregated Index by means of the FullyAggregatedFactsSeg-
ment class, to obtain the exact count. const1 is replaced by its integer identifier and
the unbounded positions (subject and object) are denoted using the integer 0xFFFF .

For simple predicates containing operators besides Equal (=), Partout extends
the getCardinality method to accept also extra simple predicates. The list of sup-
ported predicates consists of isIRI(a), langMatches(a, const), datatype(a) = uri

and a op const (with a ∈ {subj, prop, obj}, op ∈ {<,≤,=,≥, >}, literal ∈ L,
const ∈ (U ∪ L) and uri ∈ U). This method estimates the cardinality of a
minterm by evaluating the predicates over a sample of the triples contained in
the facts indexes. Consider a modification of our example where now the minterm is
property = const1∧ langMatches(object, “de“). Moreover, suppose the previous call
to getCardinality returns k. Depending on how big is k, the method will evaluate
the second predicate against the k triples matching property = const1 or just against
a subset of them. The evaluation of the predicates requires a cheap lookup in one of
the facts segments (PSO or POS in this example) for the data page with triples such
that property = const1 and then either a full iteration or a sampling of the region to
evaluate langMatches(object, “de“). When k is big, which is normal for minterms
like property = rdf : type ∧ langMatches(object, “de“) with low selective properties
or simply langMatches(object, “de“), where we need a sample over the whole triple
store, the method assigns a random integer-id value to one of the unbounded variables
producing a pivot location. The method find(subject, property, object) from the
FactsSegment class looks for the successor of the pivot: the smallest existing triple
which is greater than the pivot location. Once a successor is found, it is evaluated
against the predicate. This process is repeated log2(k) times providing an estimation
for the selectivity of the predicate based on how many triples in the sample evaluated
to true. If there are h of such triples then the selectivity is estimated as h

log2(k) and
the cardinality of the complete minterm is h

log2(k) × k. Moreover, RDF-3X provides a
way to know the biggest integer used as a dictionary id, which reduces the probability
of producing pivot locations without a successor triple.
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The next big step of the qloadpartitioner is to allocate the fragments to the hosts
based on the method described in Chapter 3.4. Once the allocation is done, it
is time to build the actual partition files, which implies to evaluate the fragments
definitions against every single triple in order to determine the host it belongs to.
Host summaries can reduce the number of predicate evaluations substantially by
identifying decisive predicates in a host in such a way that the triples do not have
to evaluated against every minterm assigned to the host. Nevertheless, the number
of triples in big datasets still represents a challenge in terms of time, therefore the
implementation exploits parallelization by assigning regions of the facts segment
to every processor. Given the fact that patterns with bounded properties are nor-
mally the least selective, it builds a shared queue with all possible properties (easily
obtained from the P Fully Aggregated Segment) which is consumed by different
threads. Once a thread gets a property value, it will evaluate the fragment definitions
against all the triples matching this triple pattern, translate them to their string
(N3) representation and output them to the temporary file of the right host. When
it has finished with one region, it dequeues another property value and repeats the
process. It is important to remark that the access to the temporary files must be
also synchronized since they can be written concurrently by all threads. In order to
reduce contention, writes are batched so that the locks on the temporal files are not
acquired in a per-triple basis. Furthermore, this phase is also in charge of gathering
the integer-to-string mappings which will be needed by the query coordinator at
processing time. They are stored in a shared temporal file too. The compile time
argument FULL_DICT allows to control whether the whole dictionary is kept in
the metastore or just a fraction whose size is determined by the argument (also
compile time) DICT_MAX_SIZE. If just a fraction of the dictionary is stored,
missed dictionary lookups have to be forwarded to the slaves.

The next stage of the partitions building phase requires to convert the temporal N3
files produced in the previous stage into actual RDF-3X triple stores. Unfortunately,
the rdf3xload utility is not useful for this purpose because it creates a new id space
for every partition. To force a global id space shared by the coordinator and the
slaves, a modified version of rdf3xload has been written. This program takes an
additional argument: the string-to-integer mappings source which in this case is the
original RDF-3X file, and assigns to every string the integer identifier it had in the
original triple store.
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The final step of the query load aware partitioner populates the tables in the
metastore with the information required for query processing: the dictionary entries,
the predicates definitions and the statistics for triple patterns and joins, which are
obtained from the newly built partitions.

5.3 The Query Coordinator

The query coordinator partoutquery is a simple program which resembles the utility
rdf3xquery with a key difference: it requires a Partout’s metastore instead of a
RDF-3X triple store file as input. Except from that difference, it provides the same
features though it contains some structural changes. The most relevant are:

• Rewrite of the query planner using the same logic but retrieving the statistical
information from the metastore rather than from the Statistics class.

• Adaptation of the resulting query plan to run in a distributed setup through
the implementation of the BMU (Binary Merge Union) physical operator.

• Extension of the RDF-3X cost model to consider network transfers

• Serialization of the query plans for transmission to the slaves.

Query execution in RDF-3X has four well-defined stages: query parsing, static
analysis, query planning and query execution. From those stages, only the first one
remains identical, whereas the fourth was partially reused. Query parsing produces a
structured representation of the query and its components which is forwarded to the
static analysis module to produce a query graph with triple patterns as nodes and
edges for every potential joining variable. The query planning phase takes a query
graph and produces a query plan, a tree data structure describing the hierarchy of
operations (index scans, joins, selections) needed to answer the query. The last stage
takes a query plan and produces a physical plan which can be executed over the data.
The implementation of the static analysis and query planning phases includes method
signatures which use objects tailored for a RDF-3X triple store file like the dictionary
and index segments classes, therefore they were rewritten using our new classes with
identical interface but different implementation. For example, the RDF-3X class
DictionarySegment has a counterpart DDictionarySegment (D for distributed) which
provides the same methods as the original class but instead of performing a lookup
in the RDF-3X B+ trees, it issues an SQL query against the Dictionary table of the
metastore and in case of a miss, forwards the lookup to the slaves and caches the
answer for future use. Utility data structures like the QueryGraph and Plan data
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types (used solely for data representation) are effectively reused, but the conversion
from the query plan to the physical plan implemented in the RDF-3X class CodeGen
was extended to adapt the resulting plan for a distributed setup. Physical plans in
RDF-3X are trees whose nodes are instances of different classes, all of them subtypes
of the abstract class Operator. This class provides a simple interface for pipelined
execution as Figure 12(a) shows, therefore an operator will forward data to its parent
as soon as it has results. The method first() is invoked to retrieve the first set of
bindings for an operator whereas the subsequent bindings are obtained by calling
next() until it returns false. In a normal execution, the invokation of next() is
propagated down the operator tree hierarchy to achieve a pipelined execution. The
BMU operator is intensively used when the bindings for an index scan operator
are distributed among several hosts. As index scans produce sorted results, BMU
implements a standard merge algorithm to produce a unique fully sorted stream of
triples, giving the impression that the data is read from a local non-fragmented index
as Figure 12(b) shows. Right after the multiples sources has been solved by means
of the BMU operator, the query coordinator uses the aforementioned AHH and
DJ transformations to find an optimal evaluation place for the non-leaf operators,
in terms of the new cost model. Partout’s cost model introduced in Chapter
4.3.2 reuses the RDF-3X cost model for response time and extends it to consider the
cost of evaluating the new BMU operator as well as the cost of network transmissions.

(a) The RDF-3X Operator hierarchy (b)
The BMU (Binary Merge
Union) operator

Figure 12: (a) The Operator class and some of its subclasses. The highlighted subclasses
were added to support distributed execution. (b) The BMU operator takes two sorted sets

of bindings and produces a fully sorted set using a standard merge algorithm.

The query execution starts with the transmission of the physical plan, from the
query coordinator to the slave server running at the host where the root operator
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was assigned for evaluation. Partout relies on the library Protocol Buffers26 for
data serialization over the network. This library provides an extensible, efficient
and platform-neutral way of serializing structured data, in this case all the possible
messages between the coordinator and the slaves which include:

• Dictionary lookups: integer-to-string (Int2StrDictLookup) and string-to-integer
(Str2IntDictLookup)

• Prepare for execution (Prep4Exec)

• Execute (Exec)

The static analysis phase which converts a parsed query into a query graph, re-
quires to convert the strings contained in the query into RDF-3X ids. When the
full dictionary is not kept at the metastore and in the presence of lookup misses,
the DDictionarySegment class broadcasts Str2IntDictLookup messages to all the
slaves. Lookups are batched for sets of keys to reduce latency and bandwith utiliza-
tion. When a slave receives a Str2IntDictLookup request for a set of strings, it will
lookup them in its local dictionary and provide the integer values for the ones it knows.

The Prepare for Execution message, shortened as prep4Exec is sent from the query
coordinator to a slave or from one slave to another and includes a serialized query
plan. This message is aimed for preparing the recipient for the execution of the
provided operator tree. For the sake of brevity, Figure 13(a) shows the example query
used in previous sections and its query plan without all the transformations applied
during query optimization. Its serialization using the Debug utility of Protocol
Buffers is depicted in 13(b). The physical plan is serialized as an array of operators
obtained by traversing the operator tree in a breath search manner. In general, the
transmitted information for an operator includes the type, the expected cardinality
based on the estimations of the cost model and the relative memory locations for
the data bindings (denoted with the prefix register). They tell the operators where
to find the input and write the output. The recipient slave is now in charge of
distributing the portions of the plan evaluated at other places, to the other slaves by
means of more Prep4Exec messages. This process is recursively performed until all
the operators have been successfully transfered to their home hosts. If a slave was
able to transfer all the subparts of the plan he received to the corresponding hosts,
it will reply success to its requestor. The response message includes a unique request

26http://code.google.com/p/protobuf/

62

http://code.google.com/p/protobuf/


id which identifies the execution request.

The last stage of the query execution consists of sending Exec messages to the
target slave until there are not more results to retrieve. The Exec requests must
provide the unique id the server assigned to the request in the preparation phase.
Exec responses include the actual result bindings in batches of 1024 integers and
a boolean value stating that there might be more results. As soon as the query
coordinator gets a data batch, it translates the received integers into strings (by
using the class DDictionarySegment) and presents them to the user. This process is
repeated until the more-results flag in the response becomes false.

Finally it is important to mention that the introduced two-stages execution was
designed to benefit the system’s availability in certain scenarios and at some extent.
If during the preparation phase, one slave is not available due to a crash or network
partition, the query execution could in some cases continue at the risk of providing
incomplete results and the query coordinator can know it in advance. That is
particularly true when the failing slave hosts only a portion of an index scan; however
there can be more harmful cases like the unavailability of the top slave or some other
slave in charge of a join evaluation. In those cases it is probably better to report the
query as unable to run.

5.4 The Slave Server

The slave server partoutslave is a lightweight process that is in charge of a data
partition and process requests involving that data. The requests includes the mes-
sages described in the previous section. The utility takes a host name, a TCP port
number and a RDF-3X triple store and relies on the library Boost.Asio 27 for network
operations. It mainly consists of an instance of the class boost::asio::io_service which
provides the functionalities of an asynchronous server that processes requests using a
pool of threads whose size can be also provided as an optional argument. By default,
it will use as many threads as available processors.

The slave server deserializes the requests and executes them accordingly. Int2Str-
DictLookup and Str2IntDictLookup requests are processed as dictionary lookups
against the partition’s dictionary, whereas Prep4Exec messages require the assign-
ment of a unique id (within the slave server) to the request as well as the the
deserialization of the transmitted operator tree to turn it into an executable RDF-3X

27http://www.boost.org/doc/libs/1_48_0/doc/html/boost_asio.html
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Figure 13: (a) A example execution plan. (b) The same plan serialized with Protocol
Buffers

physical plan. The parsing routine scans the serialized operator tree (which responds
to a breadth search traverse) and converts the serialized operators into actual physical
operators while their home host is the host where partoutslave is running. As soon as
it finds a subtree rooted at an operator whose home host is different, it (a) produces
a Prep4Exec message for that subtree and sends it to the remote host and (b) adds
a RemoteFetch operator which encapsulates the remote read, creating the illusion
that there is a single centralized plan. At the end, it adds a RemoteSend operator
at the top of the operator tree to encapsulate the data shipping to the requestor.
When the process is finished, the slave server replies with a successful Prep4Exec
response. Note that a single slave could potentially receive more than one Prep4Exec
request associated to disconnected portions of the original plan like in Figure 14. This
situation exploits parallelization since every subtree will be evaluated in a different
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thread even though some operators might be transmitted to the same host more
than once.

Figure 14: The flow of processing a request at the slave server. (1) The slave server
deserializes the portions of the plan to be evaluated locally. (2) It prepares the other slaves
by sending the subplans they are in charge of. (3) It replies to the requestor with an id for

the request used later on to start the execution.

When partoutslave receives an Exec request, it first checks the id of the Prep4Exec
message it refers to. Once it has found it, it starts the pipelined execution of the
operator tree by calling the method first() of the root operator which is propagated
down the hierarchy in order to retrieve the first set of bindings. Subsequent bindings
are obtained through calls to the next() method. The RemoteSend and RemoteFetch
operators aimed for encapsulating data shipping and reception inherit the Operator
interface, however RemoteFetch is not truly pipelined because it actually sends an
Exec request to fetch a whole batch of bindings when first() is invoked, then buffers
them and finally retrieves the first one. Subsequent calls to next() simply consume
the bindings buffer until it is empty. If that happens and the last Exec response
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stated there might be more results, the client fetches the next batch. In order to
improve response time and avoid waiting for the whole page to be transmitted, the
RemoteFetch class actually requests the next batch of bindings in background while
the last one is processed by the upper operators. This process is repeated until the
Exec reply states that all bindings were transferred.

On the other hand, the RemoteSend operator is simply a wrapper which retrieves
all the bindings of its child operator, serializes them and writes in the socket.

Figure 15: State diagram for the life cycle of a execution request.

Finally Figure 15 depicts the state diagram for the life cycle of an execution request.
When the Prep4Exec message arrives at the server, the request starts with the state
Received. When the server has deserialized the region of the tree supposed to be
evaluated locally, it changes to Scheduling. This state denotes that the server is
preparing other slaves by sending them the subplans they were assigned to. If this
operation reaches successful outcome, then the request moves to the ReadyToRun
state, otherwise it becomes UnableToRun. At this point the slave server replies to
the requestor waiting for the first Exec message. When it arrives, the request goes
to the state Running until all bindings have been retrieved and sent. At that point,
the request can be deleted. Note that after a request has reached the ReadyToRun
state, there is a hazard for memory overusage if the Exec never arrives. The same
can happen during the Running state if the physical plan has not retrieved all the
data but the requestor has not asked for another batch of bindings. Even though the
current version of partoutslave does not implement this feature, a simple background
garbage collector thread could solve this problem. In the first case, the request
arrival timestamp could be used. If a request has been in the ReadyToRun state
longer than a given threshold, it is simply removed from the requests map. For the
second case, a modification timestamp is required in order to register the last time
the operator tree was asked to report results.
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6 Evaluation

The first round of experiments is aimed to compare the performance of query
processing using the fragmentation and allocation implemented in Partout against
a centralized execution and a naive partitioning method on four datasets, three of
them taken from SPARQL benchmarks. This performance is defined in terms of
the total response time; the time elapsed between the initiation of the query and
the retrieval of the last result. A second round of short experiments was run in
different setups in order to measure the impact of network transmissions in the
overall response time in Partout. The chapter starts with a brief description
of the testing data (triple stores and query load) and the different setups. Then it
describes the conditions under which the experiments were run, to provide a proper
explanation of the obtained results. It finally concludes with a brief analysis of the
impact of remote communication and the number of partitions in the overall response
time.

6.1 Datasets

Three of the datasets used for the experiments were obtained from well-known
benchmarks in the field of RDF and SPARQL. Sp2bench is one of the datasets of the
Fedbench benchmark 28 and includes 10M RDF triples of synthethic bibliographic
information. Berlin20K and Berlin500K are datasets produced by the data generator
tool included in the distribution of the Berlin SPARQL Benchmark 29, using a scale
factor of 20K and 500K, including approximately 7M and 180M triples of semantic
data about an e-commerce use case where a set of products is offered by different
vendors and consumers have posted reviews about the products. They both have
the same schema (e.g. same properties and resource types) but differ in the number
of resources that are described. On the other hand, Billion triple challenge is the
third and biggest dataset and was taken from the edition 2008 of the Semantic
Web Challenge 30. It contains more than 500M triples of semantic data taken from
DBpedia and other sources which are part of the Linking Open Data cloud. Table 6
summarizes the most relevant information about the testing datasets.
The number of different properties in a dataset can be considered as a measure

for the complexity or diversity of the data schema. For the Billion triple challenge
dataset, the high number is not surprising since this dataset is a compendium of

28http://code.google.com/p/fbench/
29http://www4.wiwiss.fu-berlin.de/bizer/berlinsparqlbenchmark/
30http://challenge.semanticweb.org/
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several interlinked datasets. Note also that it poses a challenge when finding a proper
experimental query load that tries to bind as much data as possible.

Table 6: Summarized information about the testing datasets
Dataset RDF-3X file

size (GB)
#
triples

Properties
dataset

Properties
query load

Sp2bench 0.871 10M 76 14
Berlin20k 0.775 6.95M 31 40
Berlin500k 19 175.41M 31 40
Billion triple challenge 54 562.50M 79977 24

6.2 Queries

The first round of experiments used 20 different queries taken both from the bench-
marks and also from crawling the data graph. Ten of them were used as input for
the qloadpartitioner utility with the same frequency of occurrence (once). Regarding
the structure of the queries, they were carefully chosen to provide diversity in terms
of three criteria: topology (star-shaped, paths and combinations of them), number
of triple patterns (between 1 and 10), and result selectivity in order to produce a
varied set of execution query plans. For example, pure star-shaped queries tend to
produce chains of Merge Join operators whereas path queries cannot exploit the
sorted structure of the indexes forcing the query planner to use Hash Joins. Data
projections in other respects have an effect on the type of indexes used by the query
planner. In general, aggregation functions like count() or triple patterns with an
unbound position whose variable is not used anywhere else will make the query
planner to use the Aggregated or Fully Aggregated indexes which incur in less data
to be transmitted. Table 7 provides a brief description of the testing query set; the
detailed list of queries can be found in Appendix A.1.

Table 7: Summary about the testing and training queries
Triple patterns Shape Cardinality
1-3 4-7 >7 Star Path Mixed 31 <1K 1K-10K >10K

Sp2bench 13 4 3 7 3 10 12 2 6
Berlin20K 9 11 0 14 1 5 9 1 10
Berlin500K 11 9 0 5 1 14 6 6 8

Billion triple challenge 4 12 4 6 14 0 17 2 1

68



6.3 Opponents

Two characteristics of Partout are assessed in this chapter: the quality of the
fragmentation and allocation plus its impact on query processing and the general
system performance. Since the goal of Partout’s cost model and query processor
is to minimize response time, the system performance is measured in terms of this
metric. Moreover, the quality of the fragmentation and allocation scheme and its
impact on query processing is evaluated by comparing our proposed method against
a naive approach like fragmentation by property using the same query planner:
Partout’s query processor. On the other hand, the general system performance,
aimed to show the feasibility of our method for scalable RDF management, is assessed
through a comparison against a fully centralized and efficient execution, in this case
a single RDF-3X file containing the whole dataset.

Fragmentation by property was effectively achieved by providing the right input to
the utility qloadpartitioner, i.e., simple queries with a single triple pattern only with
bound property like SELECT * WHERE {?s rdf:type ?o}. The list of properties
was limited only to those occurring in the query load used to test Partout.
This decision is based on the fact that some existing RDF solutions like Jena [9]
or Sesame [7] provide the possibility to fragment the data internally by property,
allowing to cluster triples with important properties in dedicated relations while
keeping the rest in another relation which resembles our remainder fragment. This
can help reduce file and index sizes for properties with low selectivity and speed up
data lookup. Often, it is also combined with an approach that maps properties onto
a property table [66] which can be a materialized view with one row per resource
and one column per property so that a tuple actually encodes the information of
several RDF triples describing one resource. This approach is especially beneficial
for star-shaped queries which try to find a set of resources and in general good when
triple patterns containing those property values join frequently in the query load. The
fragmentation by property achieved by Partout clusters properties in a partition
without considering any join information, but only an “assign where it fits” policy.
Since the input query load does not contain joining triple patterns, in every step of
the allocation routine, the benefit of assigning a fragment to a host is determined
exclusively on the number of triples the host already has, hence the fragment is
assigned to the host with fewer triples allocated at that moment. Additionally, the
remainder fragment containing the triples with properties not mentioned in the
query load is splitted among all hosts as described in Section 3.5. Finally, the meta-
store contains only information about simple predicates of type property=const
(with const occuring in query load), the hosts relevant to them and their cardinalities.
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6.4 Setup

All the experiments were implemented on top of the version 0.3.6 of RDF-3X available
at http://code.google.com/p/rdf3x/. The first round compares the response
time of Partout in the aforementioned datasets, using 5 and 10 partitions in a
distributed setup against the opponents described in the previous section, whereas
the second round uses the Billion triple challenge dataset with 10 partitions and a
short list of very simple queries in order to analyze the impact of distribution and
remote transmissions in the overall performance. For this purpose, different setups
were used. They are described in Table 8.

Table 8: Different setups used in the experiments
Setup Query coordinator Slave servers
1 1 machine with an Intel Xeon

E5530 processor @2.40GHz, 32
GB of RAM running Debian
GNU/Linux 5.0.9 for 64 bits

5 machines with an Intel Xeon E5430
processor @2.66GHz, 32 GB of RAM
running Debian GNU/Linux 6.0.2 for
64 bits

2 1 machine with an Intel Xeon
E5530 processor @2.40GHz, 32
GB of RAM running Debian
GNU/Linux 5.0.9 for 64 bits

The same machine as the query coordi-
nator

3 1 machine with a Intel Core(TM)
i5 CPU 760 @2.80GHz, 8GB
of RAM running Debian
GNU/Linux 5.0.9 for 64 bits

5 machines with the same characteris-
tics as the query coordinator

Note that besides Setup 2, the experiments using 10 partitions required to run
2 slave servers per host. Setup 2 runs both the query coordinator and the slaves
servers in the same machine. Setups 1 and 3 use a different machine for the query
coordinator, so no slave server was running at the same host as the coordinator.

6.5 Experiments and Results

The first round of experiments compares the total response time in query processing
for 20 queries when using Partout’s partitioning utility with only 10 of them as
input, fragmentation by property and the centralized execution in a single RDF-3X
file using Setup 1. Testing the system with queries not used for partitioning is aimed
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to show the impact of changing the query load on system’s performance. For the
centralized case, the utility rdf3xquery was slightly modified in order to collect the
relevant timing information. Moreover, rdf3xquery was tested in one of the slave
machines of Setup 1. As the response times for the different queries can vary from a
few milliseconds to several minutes, all the charts use logarithmic scale for readability.

6.5.1 Sp2bench
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Figure 16: Response time for the Sp2bench dataset

The results for the Sp2bench dataset are depicted in Figure 16. The first ten
queries were used for training. As discussed in the previous chapter, communication
costs normally dominate the response time of distributed executions. Nevertheless,
we see that for queries 1, 4, 6, 9 and 15 (5 partitions), Partout produces lower
response times than any other approach. A look at the query plans for such queries
reveals a small cost in terms of data transfers because most of the bindings for the
triple patterns are distributed across only one host in some cases. For example, query
6 has a single triple pattern which hits always a single partition. Query 1 hits one
and two partitions for the 5 and 10 hosts cases respectively, in spite of consisting of 10
triple patterns. Likewise, query 9 consisting of 8 triple patterns hits always only two
partitions but unlike the others, it has low selectivity incurring in a longer delay when
shipping the results to the coordinator. The reason a query hitting a single host runs
faster than the centralized approach is that it is executed over a subset of the whole
triple store, much smaller in size, resulting in a faster local execution. Moreover,
the highly selective query 15 deserves some special attention as it runs faster with
5 partitions with Partout. The rationale behind the results for this query are
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explained by two facts: (a) the query hits all hosts in both cases which means the
query plan for 10 partitions is bigger and (b) the amount of intermediate results is
small, thus the response time is not fully dominated by communication costs. When
considered together, both conditions increase the impact of local execution in the
total response time.

In most cases, fragmentation by property results in higher response times since the
assignment of bindings for the triple patterns is somehow random, resulting in more
relevant hosts and therefore bigger chains of BMU operators. Because the queries
used to feed the partitioner do not include join occurrences, the allocation phase will
simply take every fragment and assign it to the host with more available space at that
moment. For query processing, it means that there is no guarantee that two joining
triple patterns have their bindings in the same host which sometimes incurs in high
communication costs. Note however that fragmentation by property achieves better
times for queries 2 (with 5 partitions), 5 and 8, all of them extremely selective, with
few triple patterns and bounds in the subject and object positions. In all these cases,
it could be observed that the query plans obtained with Partout contained chains
of BMU operators because their bindings were split accross 2 or 3 fragments which
were assigned to different hosts by the allocator. This makes sense if we remember
that the allocation routine can assign a fragment to an empty host when the hosts
containing joining fragments are overloaded. Despite the parallel fetch of the data,
BMU chains introduce some delay at execution time as can be seen for these queries.
The plans produced with fragmentation by property hit several partitions but ev-
ery triple pattern was relevant only to one partition not requiring to merge data at all.

Finally, notice that in general and more particularly for untrained queries, the
distributed execution imposes a penalty up to two orders of magnitude in the response
time in comparison to the centralized execution. This is particularly evident for
queries 8, 10 and 17-20.

6.5.2 Berlin500K and Berlin20K

The datasets Berlin500k and Berlin20k were both tested to illustrate the impact of
scaling the amount of data in query processing. Even though they share the same
schema i.e., same properties, resource types and relationships, they are not tested
with exactly the same query load as the query load for Berlin20K was not fully
representative to Berlin500K. Nonetheless, both sets of training queries follow the
guidelines previously described in Section 6.2.
The query loads for these datasets have the best coverage in terms of used
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Figure 17: Response time for the Berlin500K dataset

properties; 31 out of 40 are used to train the partitioner. Their results are shown in
Figures 17 and 18. As Figure 17 shows, Partout beats the centralized execution
in queries 3 and 12 with Berlin500K, which are opposite in characteristics: the first
one very simple (1 triple pattern) and highly selective, the second consisting of 4
triple patterns and more than 250K results. In general the cost of distribution is
more evident in this dataset as the response time of both the distributed approaches
tends to increase, producing delays up to 3 orders of magnitude in comparison to
the centralized execution for queries like 14, 15 and 20. The situation is the same in
the smaller counterpart Berlin20k where the centralized execution always produces
lower response times than the distributed approaches according to Figure 18. Note
however that the gap between the centralized approach and Partout gets smaller
as the data grows since the majority of the queries in Berlin20K run two orders of
magnitude slower in the distributed setups.
Moreover, our approach exhibits higher response times than fragmentation by

property for the trained query 10 and the untrained query 16 in Berlin500K be-
cause of the same reasons as presented for query 15 in sp2bench: local execution
delay introduced by long chains of BMU operators with significant influence on the
response time. However this scenario has a particularity: query 16 improves its
performance when using 10 partitions which might look counterintuitive with our
previous statements. This query hits all the partitions in both cases, but unlike query
15 in Sp2bench, the amount of intermediate results is huge. This means the impact
of longer chains of BMU operators is completely outweighed by the communication
costs, which now are smaller for the 10 partitions case because the transmitted
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amount of data per remote link is smaller and shipped in parallel. This scenario is
an example of the benefits of parallelism.
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Figure 18: Response time for the Berlin20k dataset

6.5.3 Billion triple challenge
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Figure 19: Response time for the Billion triple challenge dataset

The results for this dataset are depicted in Figure 19. They show a high penalty
due to communication costs, resulting in response times up to 3 orders of magnitude
bigger than the centralized execution, but considerably better than fragmentation
by property in most of the cases. Unlike the previous databases, the RDF schema
is pretty diverse which combined with a low-coverage query load (24 out of nearly
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80K properties) results in a very skewed distribution for the load (size multiplied
by its data access) of the fragments as Figure 20 shows. The remainder fragment
was not considered in this analysis, because it is not assigned to any host, but
evenly distributed among the cluster. We can observe that 90% of the total load is
concentrated in less than 10% of the fragments. It is important to mention that the
load is mostly influenced by the size of the fragments since each query appears once
in the query load and a triple pattern rarely occurs in more than three queries. For
the allocation, it implies those big fragments will be likely located alone in a single
partition splitting the bindings for trained queries among several hosts incurring
always in communication costs even though the query planner will transmit the
smallest of two separated joining fragments during query execution.
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Figure 20: Cumulative load for the fragments of the Billion triple challenge dataset

6.5.4 The Impact of Distribution

It is a well known fact in Distributed Systems that communication costs are the most
striking factor in the response time [15,45] because distribution always introduces
an additional level of complexity. In transactional systems with strong consistency
requirements for example, it requires the implementation of complex distributed
consensus protocols with several rounds of messages. In other respects, latency in
systems running on WANs (e.g. the Internet) is dominated by network latency. The
goal of this section is to provide an insight of how splitting the data among different
hosts actually affects the response time in Partout, in comparison to a fully
centralized approach where all the data resides in the same disk.
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Figure 21: (a) A query plan distributed at 2 hosts. (b) A single triple pattern relevant
to all hosts.

Even though it is always possible to estimate the time spent in network trans-
missions, quantifying their impact in the overall response time in the presence of
parallelism is not obvious. Consider the example in Figure 21(a) which shows a very
simple query plan: a merge join of two index scans, one of them with bindings in
two hosts. Even though the time to ship the results of the join to the requestor
can be easily measured, the impact of distribution in the response time of the join
operator is not clear. To see why this is true, consider the case when the first bunch
of results comes from joining the values produced by the local index scans. That
could happen if the values of the local scan on the right side of the join are sorted
before the values of the remote scan. It means the fetched data is not actually used
inmediately, but it will be local when required because the BMU must transfer at
least one page from the remote scan, to report the first tuple to the join operator.
In this case the only possible impact of remote communication might come from the
fetch of the first page. Additionally, consider what happens if the left scan in the join
introduces a high latency because the local machine is busy so that it responds after
the remote data on the right side was fetched. In that case, the operator response
time is dominated by the local execution and the characteristics of the data. In
general, it is hard to measure the fraction of an operator’s response time induced by
remote transmissions or local waits. In spite of this uncertainty, it is still possible to
estimate the impact of communication by bounding this value. The second round of
experiments was intended to define a lower bound for the impact of communication
in the total response time for a particular scenario. Four simple queries with one
single triple pattern and only one bound constant were used to measure this impact
in the Billion triple challenge dataset with 10 partitions.

• SELECT * WHERE {const1 ?p ?o}

• SELECT * WHERE {?s const2 ?o}
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• SELECT * WHERE {?s ?p const3}

• SELECT * WHERE {?s ?p const4}

All of them except the last were designed to hit the remainder fragment so that
they have bindings in all hosts, thus their plans consist of a single BMU chain with
10 leaves like depicted in Figure 21(b). The fourth query used an object value with
low selectivity occurring in the query load, with bindings in 7 hosts. We define cc as
the estimated communication cost and rc as the communication impact ratio for this
scenario.

cc := tprep + tmerge + tship (12)

tmerge := tresponse(topBMU)−max{tresponse(is1), . . . , tresponse(isn)} (13)

tship := tresponse − tplan − tprep − tresponse(topBMU) (14)

rc := cc
tresponse

(15)

cc estimates the amount of actual time that is induced by distribution whereas rc
expresses this time as a fraction of tresponse. We denote by tprep the time to distribute
the query plan to all involved slaves by means of the Prep4Exec message. tmerge is
the execution cost of merging the data in the BMU chain and is calculated as the
total response time of the top BMU operator minus the maximum response time
among the involved index scans. The total response time of an operator, denoted
as tresponse(op) is the time elapsed between the retrieval of the first and last set of
results. Note that in a centralized setup, there would not be any need to merge
data, therefore we count this time as part of the communication cost. tship measures
the time spent exclusively in transmissions between the coordinator and the home
host of the top BMU and is calculated substracting the planning and preparation
phase times and the execution time of the top operator from the total response time.
We claim that the formula for cc provides just a lower bound for the actual cost of
remote communication as it does not consider the delays of any operator due to
remote waits. This is because it is impossible to know with such a simple model,
which part of the total response time of an index scan for instance, is caused by
local or remote waits. Table 9 shows the results for tresponse, cc and rc for our queries
tested in setups 1, 2 and 3.
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Table 9: Values for the response time and the bounds for the estimated communication
cost shown milliseconds and in percentage of the response time
Times (ms): tresponse tprep tmerge tship cc rc in %

Setup 1

Query 1 48 14 1 23 38 79.17
Query 2 6362 16 1 115 132 2.07
Query 3 63 11 1 35 47 74.60
Query 4 205715 34 0 37 71 0.03

Setup 2

Query 1 48 14 4 15 33 68.75
Query 2 7539 16 0 17 33 0.44
Query 3 28 13 1 13 27 96.43
Query 4 241059 11 2 13 26 0.01

Setup 3

Query 1 48 12 2 13 27 56.25
Query 2 37243 8 1 10 19 0.05
Query 3 45 11 1 12 19 21
Query 4 170323 6 2 6 14 0.01

The cases shown in Table 9 provide just a hint about the impact of communication
in Partout because they describe very simple scenarios. As stated in Table 8,
setups 1 and 3 are distributed with five hosts running two instances of the slave
servers and a different host for the coordinator. They use machines with different
characteristics of CPU and memory. On the other hand, setup 2 runs all the slaves
in the same physical host which effectively reduces the values for cc because there
are no network transmissions. Note however that the values for tresponse are higher in
this setup because the queries are very simple and therefore strongly influenced by
CPU time, which is slightly greater because the processors have a lower clock rate
than the ones in setups 1 and 3. As queries become more complex, the dimensions
of the query plans as well as the delay of the preparation phase (which affects tprep)
become bigger because deeper query plan trees with more operators are recursively
distributed among the slaves. Moreover, the situation gets worse with more hosts
especially if a leaf operator has bindings everywhere. Finally, we can observe that
the impact of distribution is much more obvious for simple highly selective queries,
where most of the response time is induced by the communication costs.

6.5.5 Increasing the Number of Hosts

The current evidence provided by our rounds of experiments does not suggest any
corelation between the response time and the number of hosts as Figure 22 shows. In
general, the effect of having more partitions and hosts in a cluster can be benefitial or
harmful depending on the characteristics of the query. As shown in the experiments’
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Figure 22: Response time for the different datasets with 5 and 10 partitions

discussion, the effect of a bigger cluster in combination with properly trained queries is
benefitial most of the times, since more hosts imply smaller partitions and therefore
faster local execution. However, due to the load balancing policy considered in
the allocation routine, having more partitions increases the chances of splitting
the bindings for complex queries among several hosts, increasing communication
costs but also offering more opportunities for parallelization. Queries with many
intermediate results especially benefit from high parallelization, whereas for queries
with little intermediate data, the complexity of the query plan and its impact on
local execution becomes significant. It is important to remark, however, that these
results should not be taken as a discouragement to increase the number of machines
in the cluster as they might benefit other system properties like throughput. More
partitions imply that queries might have bindings splitted among more hosts but also
that the bindings relevant to unrelated queries will be probably located in different
machines, balancing the load properly and exploiting parallelization so that a single
host is not in charge of the whole data processing in the presence of many concurrent
requests.
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7 Conclusion

In this work, we have proposed a solution for scalable processing of RDF data
in a cluster of machines by considering the two major aspects of its design: data
fragmentation and allocation, and distributed query processing. The experimental
results as well as the previous analysis, reveal its feasibility for certain cases, including
small and medium-size data sets, where we achieve better response times than a
centralized execution in a very efficient triple store like RDF-3x. However, the
experiments also suggest many opportunities for improvement.
Regarding the fragmentation and allocation stage, this work provides a method

to extract access patterns from a SPARQL query load and use them to partition a
RDF dataset using standard methods for relational data. It is important to remark
that our approach does not consider replication at all, even though it could be easily
extended to support it. The key of this assessment is the allocation strategy. In
every iteration, the allocation algorithm assigns a fragment to the host with the
highest benefit at that moment, where the benefit is a function of the host’s current
load and the number of join operations that would become local if the fragment
were assigned to the host. If a fragment is relevant to more than one query with
relevant fragments allocated in different hosts, the benefit for such hosts will be
raised, but only one can have the fragment, imposing a penalty to some queries. A
straightforward solution to avoid this penalty could assign the fragment to all hosts
containing joining fragments or, in the presence of storage space constraints, to the k
most benefitial hosts where k could be fixed or calculated in every iteration based on
the distribution of the benefits. Moreover, the aforementioned scenario has a close
relation with the discussion about the impact of increasing the number of hosts, as
more partitions increase the probability of this scenario to arise.
In other respects, the structure of the query load represents another source of

improvement; in particular the information encoded in the global fragment query
graph. For example, a query load containing groups of queries with disjoint sets of
triple patterns produces a global fragment query graph with disconnected components.
This could be exploited by the allocation strategy, by allocating such disconnected
components to disjoint subsets of the cluster to make sure the bindings for the queries
in a group are not splitted among many hosts. This idea suggests further analysis to
find a relation between the complexity of the query load and the minimal number of
hosts that are enough to guarantee fully local operations. If there are more hosts in
the cluster than the minimal, then replicate the data in the other hosts. Furthermore,
approaches based on graph partitioning like Schism [15] are appealing for the global
fragment query graph because of its moderate size.
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In relation to distributed query processing, Partout proposes a two-stages
query optimization process which takes a start query and makes it suitable for
distributed execution. Even though the current implementation is built on top of
RDF-3X, the essence of the method is platform-agnostic. Additionally, depending on
the underlying software, there is a lot of room for improvement. For example, since
the partitioning routine extracts predicates not only from triple patterns but also
from filter conditions and uses them to build fragments, the metastore could provide
not only good estimations for the cardinality of selections like object > 109 (not
available in RDF-3X) but also accurate information about which hosts are actually
relevant to a filter condition over a triple pattern so that selection operators are only
sent to the relevant partitions. The current version of Partout does not offer
this possibility but it could be achieved by extending the RDF-3X query planner so
that it considers the cost of pushing selections up or down in the query plan.

Additionally our system model could be used for other tasks besides query process-
ing, specifically update management and repartitioning. The design of Partout
relies on some assumptions about RDF triple stores, specifically the way updates
normally occur. As discussed in Chapter 2.2.1, in RDF stores, updates are rare and
tend to append triples instead of modifying the existing ones. Even though updates
management has not been considered in our analysis, it could leverage the current
architecture. If a new triple arrives at the coordinator, it can be easily forwarded to
the right partition by simply finding the minterm for which it evaluates to true and
then the host in charge of the minterm.

Finally, a fragmentation scheme can become suboptimal for a triple store if either
the data or its access patterns change. In the presence of updates, the size component
of the load can lead to imbalance as some partitions get more load than others,
whereas changes in the query load affect the frequency of access. In such cases,
repartitioning is required and could easily use the current architecture by splitting
the partitioning work among all hosts. The fragmentation and allocation routines
would be executed at the coordinator and the results forwarded to the slaves, in
charge of sending the triples to the new hosts they belong to.
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A Appendix

A.1 Experimental queries

Each dataset used for the experiments was tested against 20 queries, the first ten
used to train the query load aware partitioner.

A.1.1 Sp2bench

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX dct: <http :// purl.org/dc/terms/>
SELECT ? inproc ? author ? booktitle ?title ?proc ?ee ?page ?url ?yr ?

abstract WHERE {
? inproc rdf:type sp: Inproceedings .
? inproc dc: creator ? author .
? inproc sp: booktitle ? booktitle .
? inproc dc:title ?title .
? inproc dct: partOf ?proc .
? inproc rdfs: seeAlso ?ee .
? inproc srwc:pages ?page .
? inproc foaf: homepage ?url .
? inproc dct: issued ?yr
? inproc sp: abstract ? abstract .

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX dct: <http :// purl.org/dc/terms/>
SELECT ?yr WHERE {

? journal rdf:type sp: Journal .
? journal dc:title " Journal 1 (1940) "^^<http :// www.w3.org /2001/

XMLSchema #string > .
? journal dct: issued ?yr

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
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PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ?name1 ?name2 WHERE {

? article1 rdf:type sp: Article .
? article2 rdf:type sp: Article .
? article1 dc: creator ? author1 .
? author1 foaf:name ?name1 .
? article2 dc: creator ? author2 .
? author2 foaf:name ?name2 .
? article1 swrc: journal ? journal .
? article2 swrc: journal ? journal

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ? person ?name WHERE {

? article rdf:type sp: Article .
? article dc: creator ? person .
? inproc rdf:type sp: Inproceedings .
? inproc dc: creator ? person .
? person foaf:name ?name .

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
SELECT ? article ?pages WHERE {

? article rdf:type sp:Www .
? article swrc:pages ?pages .

}

PREFIX sp: <http :// localhost / vocabulary /bench/>
SELECT ? abstract WHERE {

<http :// localhost / publications / articles / Journal1 /1940/ Article4 >
sp: abstract ? abstract .

}

PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
SELECT ? number1 ? editor WHERE{

?s swrc: number ? number1 .
?s swrc: volume "2"^^<http :// www.w3.org /2001/ XMLSchema #integer >

.
?s swrc: editor ? editor .

}
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PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / persons />
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT DISTINCT ?isbn WHERE {

sp: Paul_Erdoes swrc: editor ? article .
? article dc: references ? article2 .
? article2 swrc:isbn ?isbn .

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ?name ?title ? journal WHERE {

? article rdf:type sp: Article .
? article dc: creator ? person .
? article dc:title ?title .
? article swrc: journal ? journal .
? person foaf:name ?name .

}

PREFIX sp: <http :// localhost / vocabulary /bench/>
SELECT ?s WHERE {

?s sp:cdrom "http :// www. oinked .tld/ maxillary / dumpers .html"^^<
http :// www.w3.org /2001/ XMLSchema #string > .

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
SELECT ? article WHERE {

? article rdf:type sp: Article .
? article swrc:month ?value .

}

SELECT ?ee WHERE {
? publication <http :// www.w3.org /2000/01/ rdf - schema #seeAlso > ?ee

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT DISTINCT ? predicate WHERE {

? person rdf:type foaf: Person .
? subject ? predicate ? person .

}
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PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX dct: <http :// purl.org/dc/terms/>
SELECT ?yr ?name ? document WHERE {

?class rdfs: subClassOf foaf: Document .
? document rdf:type ?class .
? document dct: issued ?yr .
? document dc: creator ? author .
? author foaf:name ?name .

}

SELECT ? subject ? predicate WHERE { ? subject ? predicate <http ://
localhost / persons / Paul_Erdoes > . }

PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT DISTINCT ?name WHERE {

? erdoes rdf:type foaf: Person .
? erdoes foaf:name "Paul Erdoes "^^<http :// www.w3.org /2001/

XMLSchema #string > .
? document dc: creator ? erdoes .
? document dc: creator ? author .
? author foaf:name ?name.

} LIMIT 352

PREFIX swrc: <http :// swrc. ontoware .org/ ontology #>
SELECT ? number1 ? editor WHERE{

?s swrc: number ? number1 .
?s swrc: volume ? number .
?s swrc: editor ? editor .

}

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX sp: <http :// localhost / vocabulary /bench/>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
PREFIX dct: <http :// purl.org/dc/terms/>
SELECT ?title WHERE {

? article rdf:type sp: Article .
? article dct: references ? article2 .
? article2 dc:title ?title .

}

PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
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PREFIX dct: <http :// purl.org/dc/terms/>
SELECT ?title WHERE {

? article dc:title ?title .
? article dc: references ? article2 .
? article2 dc:title " cheaters kerneling napoleons "^^<http :// www.w3

.org /2001/ XMLSchema #string > .
}

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX dct: <http :// purl.org/dc/terms/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ? document WHERE {

?class rdfs: subClassOf foaf: Document .
? document rdf:type ?class .
? document dct: issued ?yr .
? document dct: partOf <http :// localhost / publications /procs/

Proceeding1 /1954 > .
}
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A.1.2 Berlin20K

SELECT ? subject ? property WHERE {
? subject ? property <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/

v01/ instances / dataFromVendor100 /Vendor100 >
}

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/

vocabulary />
SELECT ? product ?label WHERE {

? product rdfs:label ?label .
? product rdf:type bsbm: Product

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? feature WHERE{

? product a ? ProductType ; bsbm: productFeature ? feature .
?offer bsbm: product ? product ; bsbm:price ?price .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? reviewer ? country WHERE {

? review bsbm: reviewFor ? product ; rev: reviewer ? reviewer .
? reviewer bsbm: country ? country .

}

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances / dataFromProducer3 />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT ?label ? propertyTextual2 ? propertyTextual1 WHERE {

?prod rdfs:label ?label .
?prod rdfs: comment ? comment .
?prod bsbm: producer ?p .
?p rdfs:label ? producer .
?prod bsbm: productPropertyTextual1 ? propertyTextual1 .
?prod bsbm: productPropertyTextual2 ? propertyTextual2 .

}
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PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
SELECT DISTINCT ? product ?label ? propertyTextual WHERE {

? product rdfs:label ?label .
? product rdf:type bsbminst : ProductType1 .
? product bsbm: productFeature bsbminst : ProductFeature1 .
? product bsbm: productFeature bsbminst : ProductFeature2 .
? product bsbm: productPropertyTextual1 ? propertyTextual .
? product bsbm: productPropertyNumeric1 ?p1 .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? vendor WHERE {

? product a ? ProductType .
?offer bsbm: product ? product .
?offer bsbm: vendor ? vendor .
?offer bsbm:price ?price .

}

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
SELECT DISTINCT ? product ?label WHERE {

? product rdfs:label ?label . ? product a bsbminst : ProductType1 .
? product bsbm: productFeature bsbminst : ProductFeature1 .
? product bsbm: productFeature bsbminst : ProductFeature2 .
? product bsbm: productPropertyNumeric1 ? value1 .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT DISTINCT ?offer ?price WHERE {

?offer bsbm: product <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ instances / dataFromProducer1 /Product1 > .

?offer bsbm: vendor ? vendor . ?offer dc: publisher ? vendor .
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? vendor bsbm: country <http :// downlode .org/rdf/iso -3166/ countries #
US > .

?offer bsbm: deliveryDays ? deliveryDays .
?offer bsbm:price ?price .
?offer bsbm: validTo ?date

}

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/

vocabulary />
SELECT ? product ?label WHERE {

? product rdfs:label ?label .
? product rdf:type bsbm: Product .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT DISTINCT ?offer ?price WHERE {

?offer bsbm: product <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ instances / dataFromProducer1 /Product1 > .

?offer bsbm: vendor ? vendor .
?offer dc: publisher ? vendor .
? vendor bsbm: country <http :// downlode .org/rdf/iso -3166/ countries #

US > .
?offer bsbm: deliveryDays ? deliveryDays .
?offer bsbm:price ?price .
?offer bsbm: validTo ?date .

}

SELECT ? property ? hasValue WHERE {
<http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances /

dataFromVendor100 /Vendor100 > ? property ? hasValue .
}

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ?x WHERE {

<http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances /
dataFromRatingSite1 /Review1 > rev: reviewer ?x

}

SELECT * WHERE {
?s <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ vocabulary /

vendor > ?o .
}
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PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
SELECT ? product ?label ?page WHERE{

? product a bsbminst : ProductType84 .
? product bsbm: producer ? producer .
? producer foaf: homepage ?page .
? producer bsbm: country ? country1 .
? producer rdfs:label ?label .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? vendor WHERE {

? product a ? ProductType .
?offer bsbm: product ? product .
?offer bsbm: vendor ? vendor .
?offer bsbm:price ?price .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

SELECT ? otherProduct WHERE {
? otherProduct a bsbm: Product .
? otherProduct bsbm: productFeature ? otherFeature .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
SELECT DISTINCT ?offer ?price WHERE {

?offer bsbm: product <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ instances / dataFromProducer1 /Product1 > .

?offer bsbm: vendor ? vendor .
?offer dc: publisher ? vendor .
? vendor bsbm: country ? country .
?offer bsbm: deliveryDays ? deliveryDays .
?offer bsbm:price ?price .
?offer bsbm: validTo ?date .

}
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PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? reviewer ? country WHERE {

? review bsbm: reviewFor ? product ; rev: reviewer ? reviewer .
? reviewer bsbm: country <http :// downlode .org/rdf/iso -3166/

countries #US >.
}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? reviewer WHERE {

? product bsbm: producer ? Producer .
? review bsbm: reviewFor ? product .
? review rev: reviewer ? reviewer .
? review bsbm: rating1 ?score .

}
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A.1.3 Berlin500K

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ? productType WHERE{

? productType a bsbm: ProductType .
? product a ? productType .
? product bsbm: producer ? producer .
? producer bsbm: country ? country1 .
? review bsbm: reviewFor ? product .
? review rev: reviewer ? reviewer .
? reviewer bsbm: country ? country2 .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

SELECT ? otherProduct WHERE {
? otherProduct a bsbm: Product .
? otherProduct bsbm: productFeature ? otherFeature .

}

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ?x WHERE {

<http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances /
dataFromRatingSite1 /Review6 > rev: reviewer ?x .

}

SELECT * WHERE {
?s <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ vocabulary /

vendor > ?o .
}

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
SELECT DISTINCT ? product ?label ? propertyTextual WHERE {

? product rdfs:label ?label .
? product rdf:type bsbminst : ProductType1 .
? product bsbm: productFeature bsbminst : ProductFeature1 .
? product bsbm: productFeature bsbminst : ProductFeature2 .
? product bsbm: productPropertyTextual1 ? propertyTextual .
? product bsbm: productPropertyNumeric1 ?p1 .

}
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PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ? productType WHERE{

? productType a bsbminst : ProductType1 .
? product a ? productType .
? product bsbm: producer ? producer .
? producer bsbm: country ? country1 .
? review bsbm: reviewFor ? product .
? review rev: reviewer ? reviewer .
? reviewer bsbm: country ? country2 .

}

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

SELECT * WHERE {
<http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances /

dataFromProducer2 /Product69 > bsbm: productFeature ? otherFeature
.

? otherFeature <http :// purl.org/dc/ elements /1.1/ publisher > ?o .
}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

SELECT * WHERE {
?s <http :// xmlns.com/foaf /0.1/ homepage > ?o .

}

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
SELECT DISTINCT ? product ?label ? propertyTextual WHERE {

? product rdfs: comment ?label .
? product rdf:type bsbminst : ProductType12 .
? product bsbm: productFeature ? feature .
? product bsbm: productPropertyTextual2 ? propertyTextual .
? product bsbm: productPropertyNumeric1 ?p1 .

}
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PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ? product ?label ?page WHERE{

? product a bsbminst : ProductType84 .
? product bsbm: producer ? producer .
? producer <http :// xmlns.com/foaf /0.1/ homepage > ?page .
? producer bsbm: country ? country1 .
? producer <http :// www.w3.org /2000/01/ rdf - schema #label > ?label .

}

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/

vocabulary />
SELECT ? product ?label WHERE {

? product rdfs:label ?label .
? product rdf:type bsbm: Product

} LIMIT 10000

PREFIX bsbminst : <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
instances />

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?sum WHERE {

? reviewer foaf: mbox_sha1sum ?sum .
? review bsbm: reviewFor ? product .
? review rev: reviewer ? reviewer .
? reviewer bsbm: country <http :// downlode .org/rdf/iso -3166/

countries #DE > .
}

PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ?x WHERE {

<http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances /
dataFromRatingSite1 /Review3 > rev: reviewer ?x

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
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SELECT DISTINCT ?offer ?price WHERE {
?offer bsbm: product <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/

v01/ instances / dataFromProducer1 /Product1 > .
?offer bsbm: vendor ? vendor .
?offer dc: publisher ? vendor .
? vendor bsbm: country ? country .
?offer bsbm: deliveryDays ? deliveryDays .
?offer bsbm:price ?price .
?offer bsbm: validTo ?date .

}

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? reviewer WHERE {

? review bsbm: reviewFor ? product ; rev: reviewer ? reviewer .
? reviewer bsbm: country <http :// downlode .org/rdf/iso -3166/

countries #US >.
} LIMIT 1000

PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX rev: <http :// purl.org/stuff/rev#>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? reviewer WHERE {

? product bsbm: producer ? Producer .
? review bsbm: reviewFor ? product .
? review rev: reviewer ? reviewer .
? review bsbm: rating1 ?score .

} LIMIT 10000

SELECT ? subject ? property WHERE {
? subject ? property <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/

v01/ instances / dataFromVendor100 /Vendor100 >
}

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/

vocabulary />
SELECT ? product ?label WHERE {

? product rdfs:label ?label .
? product rdf:type bsbm: Product

}
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PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/
vocabulary />

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
SELECT ? vendor WHERE {

? product a ? ProductType .
?offer bsbm: product ? product .
?offer bsbm: vendor ? vendor .
?offer bsbm:price ?price .

}

PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX rev: <http :// purl.org/stuff/rev#>
SELECT ?text WHERE {

? person foaf:name "Ruggiero - Delane " .
? person rev: reviewer ? review .
? review rev:text ?text .

}
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A.1.4 Billiontriplechallenge

SELECT ?lat ?long WHERE {
?a [] " Eiffel Tower".
?a <http :// www. geonames .org/ ontology #inCountry > "http :// www.

geonames .org/ countries /#FR".
?a <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat.
?a <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long.

}

SELECT ?b ?p ?bn WHERE {
?a [] "Tim Berners -Lee".
?a <http :// dbpedia .org/ property / dateOfBirth > ?b.
?a <http :// dbpedia .org/ property / placeOfBirth > ?p.
?a <http :// dbpedia .org/ property /name > ?bn.

}

SELECT ?t ?lat ?long WHERE {
?a <http :// dbpedia .org/ property /wikilink > <http :// dbpedia .org/

resource / List_of_World_Heritage_Sites_in_Europe > .
?a <http :// dbpedia .org/ property /title > ?t .
?a <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat .
?a <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long .
?a <http :// dbpedia .org/ property /wikilink > <http :// dbpedia .org/

resource / Middle_Ages > .
}

SELECT * WHERE {
?p <http :// dbpedia .org/ property /name > "Krebs , Emil".
?p <http :// dbpedia .org/ property /deathPlace > ?l.
?c <http :// www. geonames .org/ ontology #name > ?l.
?c [] ?l.
?c <http :// www. geonames .org/ ontology # featureClass > <http :// www.

geonames .org/ ontology %23P>.
?c <http :// www. geonames .org/ ontology #inCountry > "http :// www.

geonames .org/ countries /#DE".
?c <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long.
?c <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat.

}

SELECT DISTINCT ?l ?long ?lat WHERE {
?a [] " Barack Obama".
?a <http :// dbpedia .org/ property / placeOfBirth > ?l.
?l <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat.
?l <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long.

}
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SELECT DISTINCT ?d WHERE {
?a <http :// dbpedia .org/ property /senators > ?c.
?a <http :// dbpedia .org/ property /name > ?d.
?c <http :// dbpedia .org/ property /profession > <http :// dbpedia .org/

resource / Veterinarian >.
?a <http :// www.w3.org /2002/07/ owl#sameAs > ?b.
?b <http :// www. geonames .org/ ontology #inCountry > "http :// www.

geonames .org/ countries /#US".
}

SELECT DISTINCT ?a ?b ?lat ?long WHERE {
?a <http :// dbpedia .org/ property /spouse > ?b.
?a <http :// dbpedia .org/ property /wikilink > ?x.
?a <http :// dbpedia .org/ property / placeOfBirth > ?c.
?b <http :// dbpedia .org/ property / placeOfBirth > ?c.
?c <http :// www.w3.org /2002/07/ owl#sameAs > ?c2.
?c2 <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat.
?c2 <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long.

}

SELECT ?a ?y WHERE {
?a <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type > <http ://

dbpedia .org/class/yago/ Politician110451263 >.
?a <http :// dbpedia .org/ property /years > ?y.
?a <http :// xmlns.com/foaf /0.1/ name > ?n.
?b <http :// purl.org/dc/ elements /1.1/ subject > ?n.
?b [] ?n.
?b <http :// purl.org/dc/ elements /1.1/ subject > " Blackwater ".

}

SELECT ?desc ?link ?agent ? descag WHERE{
?s a <http :// xmlns.com/foaf /0.1/ Document > .
?s a <http :// purl.org/rss /1.0/ item > .
?s <http :// purl.org/rss /1.0/ description > ?desc .
?s <http :// purl.org/rss /1.0/ link > ?link .
?link <http :// webns.net/mvcb/ generatorAgent > ?agent .
?agent <http :// purl.org/dc/ elements /1.1/ description > ? descag

} LIMIT 10

SELECT ?prop ?prop2 WHERE {
?prop <http :// www.w3.org /2000/01/ rdf - schema #domain > <http :// xmlns

.com/foaf /0.1/ Person > .
?prop <http :// www.daml.org /2001/03/ daml+oil#inverseOf > ?prop2 .

}

SELECT ?label ? label1 ? creator WHERE {
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?s <http :// www.w3.org /2000/01/ rdf - schema #label > ?label .
?obj a <http :// xmlns.com/foaf /0.1/ Document > .
?s <http :// www.w3.org /2000/01/ rdf - schema #seeAlso > ?obj .
?obj <http :// www.w3.org /2000/01/ rdf - schema #label > ? label1 .
?obj <http :// purl.org/dc/ elements /1.1/ creator > ? creator .

}

SELECT ?s WHERE {
?s <http :// purl.org/dc/ elements /1.1/ article > ?prop .

}

SELECT * WHERE{
?s <http :// purl.org/dc/ elements /1.1/ contributor > " testing " .
?s <http :// purl.org/dc/ elements /1.1/ format > ? format .
?s <http :// purl.org/dc/ elements /1.1/ date > ?date .
?s <http :// purl.org/dc/ elements /1.1/ coverage > ?cov .
?s <http :// purl.org/dc/ elements /1.1/ language > ?lang .
?s <http :// purl.org/dc/ elements /1.1/ creator > ? creator .
?s <http :// purl.org/dc/ elements /1.1/ publisher > ?pub .
?s <http :// purl.org/dc/ elements /1.1/ relation > ?rel .
?s <http :// purl.org/dc/ elements /1.1/ subject > ?sub .

}

SELECT * WHERE{
?s <http :// purl.org/dc/ elements /1.1/ contributor > ?contr .
?s <http :// purl.org/dc/ elements /1.1/ format > ? format .
?s <http :// purl.org/dc/ elements /1.1/ date > ?date .
?s <http :// purl.org/dc/ elements /1.1/ coverage > ?cov .
?s <http :// purl.org/dc/ elements /1.1/ language > ?lang .
?s <http :// purl.org/dc/ elements /1.1/ creator > ? creator .
?s <http :// purl.org/dc/ elements /1.1/ publisher > ?pub .
?s <http :// purl.org/dc/ elements /1.1/ relation > ?rel .
?s <http :// purl.org/dc/ elements /1.1/ subject > ?sub .

}

SELECT * WHERE {
?p <http :// dbpedia .org/ property /name > ?name.
?p <http :// dbpedia .org/ property /deathPlace > ?l.
?c <http :// www. geonames .org/ ontology #name > ?l.
?c [] ?l.
?c <http :// www. geonames .org/ ontology # featureClass > <http :// www.

geonames .org/ ontology %23P>.
?c <http :// www. geonames .org/ ontology #inCountry > ? country .
?c <http :// www.w3.org /2003/01/ geo/ wgs84_pos #long > ?long.
?c <http :// www.w3.org /2003/01/ geo/ wgs84_pos #lat > ?lat.

} LIMIT 1000
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SELECT ?desc ?link ?agent ? descag WHERE{
?s a <http :// xmlns.com/foaf /0.1/ Document > .
?s a <http :// purl.org/rss /1.0/ image > .
?s <http :// purl.org/rss /1.0/ description > ?desc .
?s <http :// purl.org/rss /1.0/ link > ?link .
?link <http :// webns.net/mvcb/ generatorAgent > ?agent .
?agent <http :// purl.org/dc/ elements /1.1/ description > ? descag

}

SELECT DISTINCT ?name ?name2 WHERE {
? person <http :// dbpedia .org/ property /religion > <http :// dbpedia .

org/ resource / Roman_Catholic_Church > .
? person <http :// xmlns.com/foaf /0.1/ page > ?page .
? person <http :// dbpedia .org/ property / placeOfDeath > ? pdeath .
? person <http :// dbpedia .org/ property / predecessor > ?prede .
? person <http :// xmlns.com/foaf /0.1/ img > ?img .
? person <http :// www.w3.org /2000/01/ rdf - schema #comment > ? comment .
? person <http :// dbpedia .org/ property /ordination > ? ordination .
? person <http :// dbpedia .org/ property /title > ?title .
? person <http :// www.w3.org /2000/01/ rdf - schema #label > ?name .
? person <http :// dbpedia .org/ property /name > ?name2 .

}

SELECT ?name WHERE {
?s <http :// dbpedia .org/ property /team > " retired " .
?s <http :// dbpedia .org/ property /name > ?name .

}

SELECT * WHERE {
? person a <http :// xmlns.com/foaf /0.1/ Person > .
? person <http :// dbpedia .org/ property /spouse > ? spouse .
? person <http :// dbpedia .org/ property / placeOfDeath > ?city .
? spouse <http :// dbpedia .org/ property / placeOfDeath > ?city .
? country <http :// dbpedia .org/ property /capital > ?city

} LIMIT 10

SELECT * WHERE {
?x <http :// dbpedia .org/ property /wikilink > ?link .
?x <http :// dbpedia .org/ property / disambiguates > ?y .
?y a ?sth }

106



A.2 Optimal Allocation

The problem of optimal allocation of fragments in Partout can be formulated
as an integer linear program. Let QL be a representative query load for some data
set T , M a non-redundant and complete fragmentation of T output by our query
load aware partitioner, and G(QL,M) the global fragment graph. Define a set of
|M |2 constants ωij, which denote the weight of the edge between fragments mi and
mj in G(QL,M). This value represents the number of times fragments mi and mj

join in the query load QL. If there is no edge between mi and mj, then ωij = 0.
Define E = ∑|M |

i=1
∑|M |
j=1 ωij. We want to assign the fragments in M to a set of hosts

H with |H| = n such that joining fragments are assigned to the same host but the
total load in the system is fairly distributed. The load L(mi) induced by a fragment
mi, is L(mi) = s(mi)f(mi) where s(mi) is its size and f(mi) denotes its frequency
of access. The total load L in the system is:

L =
|M |∑
i=0

L(mi)

Define the set of |M |n boolean variables xij such that:

xih =

1; Fragment mi is assigned to host h

0; otherwise

We can formulate the optimal allocation problem as an integer linear program:

min
|M |∑
i=1

|M |∑
j=1;j 6=i

(E − ωij)
n∑
h=1

(xih + xjh)

under the following constrains:
(a) A fragment must be assigned to only host

∀ i ∈ {1, 2, . . . |M |}
n∑
h=1

xih = 1

(b) The load among the hosts must be balanced

∀ h ∈ {1, 2, . . . n}
|M |∑
i=1

s(mi)f(mi)xih ≤
L

|H|

(c) Integrality constraints

∀ i, h xih ∈ {0, 1}
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