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Impact of Explanation Techniques and Representations on
Users Comprehension and Confidence in Explainable AI

ANONYMOUS AUTHOR(S)∗

Local explainability, an important sub-field of eXplainable AI, focuses on describing the decisions of AI models
for individual use cases by providing the underlying relationships between a model’s inputs and outputs.
While the machine learning community has made substantial progress in improving explanation accuracy
and completeness, these explanations are rarely evaluated by the final users. We therefore evaluate the impact
of various explanation and representation techniques on users’ comprehension and confidence. Through
a user study on two different domains, we assessed three commonly used local explanation techniques—
feature-attribution, rule-based, and counterfactual—and explored how their visual representation—graphical
or text-based—influences users’ comprehension and trust. Our results show that the choice of explanation
technique primarily affects user comprehension, whereas the graphical representation impacts user confidence.

CCS Concepts: •Human-centered computing→ Empirical studies inHCI; •Computingmethodologies
→ Artificial intelligence.
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1 INTRODUCTION
Artificial Intelligence (AI) algorithms have become ubiquitous for decision-making, even in high-
stakes domains such as law [5, 76] and healthcare [13, 25]. This has raised numerous critical
questions and concerns. One of those concerns arises from the fact that current AI algorithms
can be incredibly complex, which makes algorithmic decision-making opaque—i.e., the algorithms
behave like black boxes [68]. One approach to tackling this challenge is to make AI algorithms
more explainable. This is the main goal of the field of eXplainable AI (XAI). By improving the
transparency of AI systems, the XAI research community aims to increase people’s confidence and
comprehension in AI systems, and thereby facilitate their adoption [29, 42, 63].
Over the last five years, the XAI community has primarily focused on developing methods

to compute local explanations for AI models. These approaches explain the reasoning of an AI
system when applied to an individual case, i.e., a target instance, and can be categorised into three
broad ‘explanation families’: feature-attribution, rule-based, and counterfactual [9, 26, 28, 35]. A
large number of explanation methods exist, with several of them being widely adopted by data
practitioners [27, 48, 63, 64]. Despite the rise of various XAI methods, numerous works have pointed
out a lack of end-user involvement in the assessment of XAI methods [1, 4, 24, 65]. For instance,
Adadi et al. [1] found that across 381 XAI articles, only 5% of articles explicitly evaluated the
proposed methods through a user study. This implies that novel explanation methods are frequently
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2 Anon.

published without a clear understanding of how the intended end-users perceive or interpret these
explanations.
In contrast to the majority of work found in the XAI and ML communities, user studies on

AI explanations have been commonplace within the wider Human-Computer Interaction (HCI)
community [16, 43, 77]. This line of work underscores the importance of evaluating the impact
of explanations on comprehension (i.e., do users better understand the AI system thanks to the
explanation?), and confidence (i.e., to which extent explanations increase or decrease users’ confi-
dence in AI recommendations?). Nevertheless, existing studies typically focus on specific use cases,
for example in a distinct domain, involving a single explanation type, or considering a small and
very specific cohort (e.g., CS students). Furthermore, these studies usually rely on hand-crafted
explanations rather than explanations generated by real-world AI systems. This creates a barrier
to the adoption of these results to other XAI scenarios, and is also unable to provide comparative
evidence of the suitability of the different explanation techniques that are used in the real world.
In this paper, we seek to address this limitation by studying the impact of feature-attribution,
rule-based, and counterfactual explanations on users’ comprehension and confidence in AI-based
recommendations. Given the known effect of visual representations on human perception of in-
formation [16, 77], our investigation also includes a comparison of the effect of the explanation’s
visual representation on users’ comprehension and confidence.

Our investigation consists of a user study on a cohort of 280 crowd-workers who were given an
AI-assisted prediction task across two high-stakes use cases: prediction of the risk of obesity and
recidivism. The AI agents operate on tabular data and were enhanced with explanations. Those
explanations were computed using established explanation methods, i.e., LIME [63], Anchors [64],
and Growing Fields [21, 45]. The contributions of our work include:
(1) Two user studies evaluating the impact of (a) the three aforementioned explanation techniques,

and (b) two visual representations (graphical vs. text) on users’ confidence and comprehension.
(2) A methodological framework for user studies designed to measure the impact of AI explanations

on users’ confidence and comprehension;
Our study shows that the explanation technique impacts primarily users’ comprehension, whereas

the choice of a graphical representation has a greater impact on users’ confidence. Graphical
representations are perceived as more trustworthy, whereas rule-based explanations are most
effective at conveying the relevant features of an AI’s decision process. The results of our studies
inform a set of recommendations for XAI practitioners and researchers.

2 RELATEDWORK
Our work lies at the intersection of eXplainable AI, HCI, and data visualisation. Thus, we first
review the most prominent local XAI techniques that motivate this research. Next, we discuss user
evaluations of XAI systems. This is followed by a survey of existing guidelines and metrics used to
conduct user studies on XAI tools.

2.1 XAI Techniques for Local Explanations
An AI model is an agent that takes an instance 𝑥 as input and returns an output. The instance 𝑥
is composed of features, e.g., attributes of a person for tabular data, image pixels, or words in a
text. The output can be a class, e.g., low risk vs. high risk, or a number, e.g., a price estimation. An
explanation is an expression that describes, in an understandable manner, the relationships between
the AI model’s inputs and outputs [47]. Explanations can be computed via a post-hoc explainability
module, or extracted directly from the model (for white boxes). When the explanation focuses
on a single instance, we say it is a local explanation. These have lately received more attention
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from researchers in machine learning (ML) [35]. Based on prominent XAI surveys [9, 28], we can
categorise these explanations into three main types (see Figure 2):
Feature-attribution explanations. These explanations provide the contribution of the input

features to a black box’s output on a target instance. The magnitude of the contribution informs us
of the importance of the feature for a particular prediction outcome, whereas the sign denotes a
positive or negative correlation with that outcome. Besides classical white boxes such as linear
regression, there exists a range of methods that can compute such scores from black-box models
in a post-hoc manner. Some of them work for specific models, such as neural networks [71, 74],
whereas others such as LIME [63] and SHAP [48] are model-agnostic. This has made them popular
among researchers and practitioners. While we used LIME in our study, SHAP could have also
been a viable alternative.

Rule-based explanations. Approaches such as Anchors [64] and LORE [27] compute explana-
tions under the form of decision rules on the input features. Anchors is model- and data-agnostic
and resorts to a bandit exploration to compute a single general and accurate decision rule that
mimics the black box’s behaviour on the target instance [64], whereas LORE operates on tabular
data and learns a decision tree trained on artificial instances that resemble the target instance [27].
Explanation rules can, therefore, be extracted from this decision tree. We chose Anchors for our
experiments since it provides a single explanation rule without additional computation.

Counterfactual explanations. These explanations convey the minimum adjustments required
in the target instance to modify the AI model’s prediction. They, therefore, identify the most
sensitive features within the AI agent’s decision process. Counterfactual explanations are similar
to adversarial examples as they both perturb an instance in order to change a model’s prediction.
However, their objectives differ. Adversarial examples aim to deceive the model to test the robust-
ness of ML models and, therefore, rely on non-perceptible perturbations in the input data [36].
Counterfactual explanations, on the other hand, do not have this constraint because they aim to be
actionable and understandable. Methods such as Growing Spheres [45], FACE [62] or DICE [59]
perturb the target instance, i.e., they create new instances by increasingly modifying various at-
tributes in the target instance until they identify an instance that changes the model’s prediction.
Our experiments use the Growing Fields algorithm [21], an extension of the Growing Spheres [45]
that supports both continuous and categorical attributes. We opted for this algorithm because of its
simplicity. Contrary to other approaches [59, 62], it does not impose additional constraints on the
counterfactuals (e.g., diversity, likelihood), whose evaluation lies beyond the goal of our study.

2.2 Evaluating Explainable AI Systems
Explainability is an inherently human-centric property. Consequently, Miller argues that the
development of effective explanation modules requires the joint effort of the XAI and HCI re-
search communities [55]. While the HCI community has emphasised the need for human-centred
evaluations for XAI systems [24, 46], several surveys have highlighted the scarcity of XAI pa-
pers that evaluate their novel explanation methods through user studies [1, 4, 24]. Among the
works that carried out user studies, most assessed either the validity of their novel explanations
method [41, 49, 63, 64, 66, 86] or the impact of the explanation’s visual representation [16, 60, 61, 85].
A limitation of these works is that they are typically limited to the evaluation of one kind of expla-
nation technique [41, 60, 66] and one application domain [61, 86]. Some prominent explanation
methods, such as LIME [63] and Anchors, evaluate the quality of the explanations with a small
number of computer science students who are already familiar with machine learning [64]. In our
work, we set out to compare three different explanation techniques on two distinct datasets with
lay users.

, Vol. 1, No. 1, Article . Publication date: July 2024.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

To study the impact, and thus the benefit, of explanations, prior works have mostly evaluated
users’ trust and understanding in highly specific settings [6, 16, 38, 43, 78]. For instance, Arora et
al. [6] studied the impact of interactive explanations on users’ understanding. The results of this
study confirmed that explanations help users identify key elements for the prediction. Cheng et
al. [16] compared the effect of interactive versus static explanations, as well as black-box versus
white-box models, on users’ trust and understanding. They observe that both white boxes and
interactive explanations are beneficial to users’ comprehension.
Other researchers have studied the influence of the explanation’s representation on users’

perceptions [16, 77]. Van Berkel et al. compared textual and scatterplot representations and showed
that the usage of a scatterplot visualisation led to lower perceived fairness [77]. Other works have
compared the effects of different explanation methods on users [6, 38, 78]. For instance, Van derWaa
et al. compare hand-crafted example-based and rule-based explanations for the self-management
of diabetes [78].
In this study, we contribute to this research body by providing a comprehensive evaluation

that compares three real explanations, generated by the well-established methods LIME, Anchors,
and Growing Fields, rather than hand-crafted explanations by domain experts. We compare these
methods to two novel visual representations, namely graphical and textual. Following the recent
guidelines for evaluating XAI applications [78], we experiment with a large cohort (280 participants),
on two diverse datasets, and we collect both perceptual and behavioural metrics for users’ confi-
dence and comprehension. To our knowledge, this combination of factors has not been previously
investigated.

2.3 Guidelines and Metrics to Conduct User Studies
The evaluation of trust and understanding for XAI systems has been inspired by research in
psychology and cognitive sciences, which have produced numerous guidelines for measuring
such cognition aspects [33, 37, 79]. Cahour and Forzy [14] formulated a trust scale based on three
factors: reliability, predictability, and efficiency. This scale, comprising four questions, directly
asks participants about their confidence in the XAI system. Madsen and Gregor [50] proposed an
eight-question scale to measure perceived technical competence and comprehension.

Ribeira and Lapedriza [65], as well as Doshi-Velez and Kim [24], classify users into three distinct
groups: (a) machine learning practitioners, (b) domain experts, and (c) laypeople. Building upon
these three categories, Doshi-Velez and Kim propose to distinguish between application-grounded
and human-grounded evaluations. The former involves real-world tasks conducted by computer
scientists or domain experts, while the latter includes simplified (and synthetic) tasks, such as
providing individuals with input and an explanation and asking them to simulate the model’s
prediction. Doshi-Velez and Kim also indicated that running evaluations with laypeople offers the
advantage of (a) evaluating the impact of the explanations more broadly, and (b) simplifying the
execution of the experiments since factors are easier to control.
Our work evaluates the impact of the explanation technique and visual representation with

lay users on a human-grounded task. Following the advice from Van der Waa et al. [78], we
evaluated the impact of the explanations on two complementary aspects, including confidence and
comprehension.

3 EXPLANATION TECHNIQUES AND REPRESENTATIONS
We first present the two datasets, the ML models and the explanation methods used for the
experiments. The explanation representations are then introduced.
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Fig. 1. Example of two individuals presented to the participants for the Obesity (left) and COMPAS (right)
datasets.

3.1 Datasets & AI models
Datasets. Our evaluation is conducted on two datasets widely used by the XAI community [2, 11,
19, 39, 73, 87], namely COMPAS [12] and Obesity [52]. COMPAS is a tabular dataset collected in
the USA and used to train a model that predicts a criminal defendant’s likelihood of re-offending.
The Obesity dataset [52] is used to predict the risk of developing obesity based on an individual’s
body mass index (BMI) and answers to various questions, with data originating from Colombia,
Peru, and Mexico1. Figure 1 displays a snapshot featuring one individual from each dataset.We
selected these datasets as they represent two high-stakes domains that concern everyone and for
which explainability and user confidence are deemed important: justice (recidivism) and healthcare
(obesity) [3, 80]. We decided to focus onmore than one domain following the recommendations from
the literature [77, 78] that suggest that a meaningful application-agnostic XAI evaluation should
preferably include more than one domain, and strike a balance between simplicity—participants
should understand the domain of the AI—, and plausibility—the task should be difficult enough to
justify the need for AI assistance. Detailed information about the datasets is available in Appendix A.
AI Model and Explanations.We trained a multi-layer perceptron (MLP) classifier2 on each

dataset for our experiments. We selected this model due to its predictive power, and its status as
a true black-box model. Its decision boundary is too complex to be easily understood by simply
examining model parameters. We remark that other powerful black-box models, such as random
forests or gradient-boosting trees, would have also been suitable for this task. We trained the MLPs
on 70% of the instances and evaluated them on the remaining 30%. An accuracy of 67% and 78% was
obtained on COMPAS and Obesity, respectively. Although these accuracy levels might appear low,
they are consistent with those observed in the literature [44, 82]—and remained concealed from the
participants to avoid any influence on their confidence in the model. On COMPAS, the AI agent was
trained to predict the risk of recidivism among four classes: ‘very low risk’, ‘low risk’, ‘high risk’, and
‘very high risk’. The original Obesity dataset considers seven weight categories which we simplified
into four ordinal classes (to stay consistent with COMPAS): ‘underweight’, ‘healthy’, ‘overweight’,
and ‘obese’. Then, for each instance in the test set, we generated three different explanations: a
feature-attribution explanation based on LIME [63], a rule-based explanation based on Anchors [64],
1We removed the weight from the obesity dataset, which otherwise would have oversimplified the prediction task. The task,
therefore, becomes to predict the risk of obesity given a patient’s eating and activity habits.
2https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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Explanation Graphical Representation Textual RepresentationTechnique

Feature-attribution

Rule-based

Counterfactual

Fig. 2. Different explanations for a given individual on the Obesity dataset.

and a counterfactual explanation using Growing Fields [21]. The methods were used with the
default parameters except that (a) Anchors used the discretisation proposed by Delaunay et al. [20],
and (b) we computed the attribution of all features in the LIME explanation—contrary to the default
configuration that only picks the top 6.

For each dataset, we selected five target individuals in the test set to be presented to participants—
one for each of the four predicted classes plus an additional individual used as an example. Figure 1
depicts how information about an individual is shown to the participant for both datasets. The grey
column represents the various features while the corresponding prisoner or patient data are in the
second column. The code, the datasets, and the experimental results are available on GitHub3.

3.2 Common Representation for Explanations
Since the studied explanation types do not offer the same exact insights into the AI’s prediction
process, the explanations are usually conveyed using different representations, which also depend
on the nature of the data (e.g., image, tabular, text, etc). When it comes to tabular data, existing
XAI toolkits4 opt for a graphical representation based on bars for feature-attribution explanations
– as illustrated in Figure 2. Conversely, for rule-based and counterfactual explanations, the most
common representation is natural language (see Figure 2). To control for this visual representation
in our experiments, participants are confronted with common graphical and textual representations
for all the explanation types.
Graphical Representation. For each explanation method, we depict the graphical represen-

tation through diagrams. As our AI models predict four ordinal target outcomes, we choose a
3https://anonymous.4open.science/r/user_eval-1776
4AI360, Dalex, H2O, eli5, InterpretML, What-if-Tool, Alibi, Captum.
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common graphical representation that depicts the spectrum of classes on the x-axis and adds a
different background colour to the region covered by each of the classes.

• As proposed by LIME [63] for feature-attribution explanations, the x-axis depicts the contribution
of each feature to the predicted class in the form of a directed bar. The length of the bar denotes the
magnitude of the attribution, whereas its direction tells us towards which side of the spectrum the
feature biases the AI model’s prediction (underweight vs. obese, low risk vs. high risk). To keep
the explanation’s complexity under control, our representation groups features with a marginal
attribution under an artificial feature labelled ‘Other features’. The aggregated attribution of this
label is the sum of the attribution scores of those features (for more details read Appendix D.1).

• For rule-based explanations, we took inspiration from Molnar [58]. Our representation uses
stacked bars as well, where each condition of the rule is assigned to a bar with a length propor-
tional to the increase in confidence provided by the condition. Consider the explanation rule
in Figure 2, stating that “(a) having family antecedents of obesity, (b) an age between 23 and 26,
(c) and practising no physical activity” incurs an “obese” prediction with 90% confidence. The
blue bar shows that condition (a) on its own predicts obesity with 50% confidence; conditions (a)
and (b) increase the confidence to 71%, and all three conditions increase the confidence to 90%.

• For counterfactual explanations we also employ stacked bars. Each feature in the explanation
incurs a hypothetical change of value and is associated with a bar. The length of the bar is
proportional to the change incurred in the model’s prediction when the value of the input feature
is changed. For instance, the counterfactual explanation from Figure 2 says that if the patient:
“(a) had family antecedents of obesity, and (b) practised less often physical activity” then the AI
model would have predicted “overweight” (the counterfactual class) instead of “underweight”.

Text Representation. For all explanation types we present the explanation as a bulleted list.
The list is a manual transcription of the contents of the charts starting from the most impactful
feature—as reported by the explanations. This transcription was reviewed and validated by all
authors. Each item from the list describes the effect of each feature on the model’s answer. This
effect can be an increase in the confidence of the prediction (for rule-based explanations), how
much the feature contributes to the model’s prediction (feature-attribution explanation), or how
sensitive the AI model is in regards to the changes in the input features (counterfactual explanation).
For feature-attribution explanations, we used colours to highlight the direction of the impact of
each feature. Finally, the AI model’s outcome (e.g., obesity, high-risk) is highlighted in bold.

4 METHOD
While the XAI community has proposed multiple post-hoc explanation methods based on feature
attribution, rules, and counterfactual instances, no user studies have compared the impact on users’
confidence and comprehension for all these explanation styles. This motivates our first research
question RQ1: “How do local explanation techniques, i.e., feature-attribution, rule-based,
or counterfactuals, affect users’ confidence and comprehension of an AI model?”. Existing
works have shown that explanations improve users’ ability to comprehend a model [6, 63]. Hence,
this question underlies our first general hypothesis; (H1) explanations improve the participants’
confidence and comprehension of amodel. In addition, we observe that unlike other explanation
types [61], decision rules have consistently demonstrated high efficiency in helping users understand
the inner mechanisms of a model [6, 64]. This leads to our second hypothesis; (H2) rule-based
explanations contribute the most to participants’ comprehension of a model. In regards
to confidence, existing works have failed to show significant improvements in the presence of
explanations [61, 78]. We, therefore, follow a more exploratory approach to study the impact of the
explanation technique on confidence and do not hypothesise on this aspect.

, Vol. 1, No. 1, Article . Publication date: July 2024.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

As suggested in [16, 77], the visual representation of an explanation impacts the users’ percep-
tion. This leads to our second research question RQ2: “Does the explanation’s visual repre-
sentation impact the users’ confidence and comprehension?”. As the general tendency is
to represent feature-attribution explanations graphically and both counterfactual and rule-based
explanations textually, our hypotheses are as follows; for feature-attribution explanations,
graphical representations improve users’ confidence and comprehension (H3), whereas a
textual representation elicits higher confidence and comprehension for rule-based and
counterfactual explanations (H4).

Our study seeks to elucidate the relationships between users’ comprehension and confidence in
the AI model (dependent variables), based on two (i) the explanation style—feature-attribution, rule,
or counterfactual—and (ii) the visual representation—graphical or textual (independent variables).
Since this requires an elaborated experimental protocol, the paper also contributes with a general
workflow (Section 4.1) and a set of scales and metrics (Section 4.2) to conduct such kinds of
experiments. These resources are intended to guide other researchers in XAI interested in measuring
the impact of explanations on users’ confidence and comprehension.

4.1 Task
Our user study follows a between-subject design, in which each participant interacts with one
representation and one explanation style across a total of four prediction tasks. These tasks aim to
predict either the risk of recidivism of a defendant given their profile or the risk of obesity of a
person given some information about their habits. To perform those predictions, participants count
on the recommendations of the AI models described in Section 3.1, in addition to an explanation
of that recommendation. We created these surveys on Qualtrics5, for each dataset (COMPAS and
Obesity), explanation technique (feature-attribution, rule-based, counterfactual) and representation
(graphical vs. textual). For each dataset, we also defined a control group for which participants did
not get any explanation. Figure 3 outlines the process followed by each of these surveys. Given a
dataset, the only difference among the seven surveys is the explanation provided to the participant.
Each survey is composed of three phases:
Introduction. The experiment starts with an introductory description of the tasks assigned to the
participant and the information used by the AI model to make recommendations (cf. Figure 1). We
subsequently asked participants two questions to verify whether they understood the task.
Task Round.After explaining the experiment, participants are presented with four prediction tasks,
each comprising two steps. First, participants assess the risk of either obesity or recidivism based
on the provided information and indicate their confidence in their prediction on a 5-point Likert
scale. Following this assessment, the participants have access to the AI model’s prediction along
with its associated explanation (cf. Figure 2). Based on this explanation, we then asked participants
to select the features, among all possible features, that were used by the AI model to make its
recommendation. Participants can reconsider their prediction and answer two questions to report
their understanding of the explanation (‘Immediate Explanation Understanding’, see Figure 3) and
their confidence in their prediction (‘User Prediction Confidence’) on a 5-point Likert scale.
Post-Questionnaire.After the prediction tasks, the participants answer a 8-question questionnaire
where they can report their understanding regarding the AI model.

4.2 Scales & Metrics
To assess the impact of our independent variables—visualisation and explanation technique—, we
employed a range of scales and metrics to evaluate users’ confidence and comprehension. These

5https://www.qualtrics.com/
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Fig. 3. Experimental workflow used to assess participant perception and behaviour when interacting with a
given explanation technique. Behavioural measurements are in green, while self-reported measurements are
in blue. The task round is repeated for four different prediction problems.

elements are frequently identified as crucial measurements in human-centred XAI [32, 56, 67]. It
has been shown through several user studies that users’ perception of comprehension and actual
comprehension may disagree [16, 17, 31]. Therefore, we distinguish between the subjective nature
of self-reported and behavioural (actual comprehension/confidence) metrics. Figure 3 shows when
these parameters are measured (a detailed example of the measurement process is provided in
Appendix E).

Confidence. A common measure of user confidence is the agreement rate between the users
and the AI model [10, 75, 81]. Therefore, we build upon the methodology of Broon and Holmes [10]
to measure users’ behavioural confidence.
• Behavioural Confidence (Follow Prediction): Proportion of times the participants modified
their prediction in favour of the AI’s prediction (only when the initial participant’s prediction
differs from the model’s).

• Self-Reported Confidence (Δ Confidence): This is the difference between the self-reported
confidence before and after accessing the AI-based predictions and explanations (‘User Prediction
Confidence 2’ - ‘User Prediction Confidence 1’ in Figure 3).
Comprehension. A widely accepted definition of a good explanation is its capacity to be under-

stood by a human within a reasonable time frame [47]. We thus gauge the users’ comprehension of
the model through four aspects divided into two behavioural and two self-reported metrics.
• Behavioural comprehension (Precision and Recall): Building upon the methodology pro-
posed by Weld and Bansal [84], we assess users’ behavioural understanding through a simple
quantitative task [72]. We ask participants to identify the features that have the most impact
on the classifier’s prediction according to the explanation. This task evaluates their ability to
interpret the information provided by the explanations. Since understanding is a multifaceted
process, we acknowledge that these measures capture a specific, still meaningful, aspect of it.
– Precision. It measures the proportion of features correctly identified by the participant

among all the features selected by the XAI method. It is computed as the number of properly
identified features divided by the number of selected features.

– Recall. It computes the ratio of features correctly identified by the participant among all
the correct features (the features in the explanation).
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Surprisingly, participants do not always indicate the features present in the explanation and may
select features they think the model should consider (see Section 5.1).

• Self-Reported Understanding (Immediate and Final Understanding):
– Immediate Understanding. This is the self-reported comprehension of the system predic-

tion on a five-point Likert scale during the explanation review.
– Final Understanding. This was obtained from an adapted questionnaire by Madsen and

Gregor [50] on perceived technical competence and comprehension on a 5-point Likert
scale.

4.3 Participants
We recruited participants through the Prolific Academic platform. We restricted participation to
crowdworkers with at least a high school degree to guarantee a reasonable response quality. We
also decided not to limit ourselves to a particular geographical location to promote diversity in
our sample. Finally, we ensured that participants could participate only once in our study. After
accepting the task, participants were redirected to the corresponding Qualtrics survey. Based on a
pilot evaluation with 20 people, we estimated a completion time of 20 minutes for the non-control
group and 15 minutes for the control group. The control group received the AI prediction without
an explanation and was thus expected to fill out the survey faster. Participants were paid £9.30 per
hour, which translated into £2.25 for the control-group participants, and £3.10 for the non-control
group.

To limit Type II errors, we determined the number of respondents on the basis of a power calcu-
lation using G*Power [69]. Given the exploratory nature of our research, we used medium-to-large
effect sizes (𝑓 2 = 0.2), an alpha level of 0.05, and a power of 0.8, in line with established methodolog-
ical recommendations [30]. For an a priori multiple linear regression model with two predictors,
the required minimum group size is 107 participants. We finally recruited 280 participants—140
participants per dataset, or 20 participants per combination of explanation technique and visual
representation. Table 4 in Appendix B presents the demographic information of our participants.
We recruited crowdworkers as they are commonly relied on by researchers and companies for
data labelling tasks [23]. With the growing interaction and collaboration between crowdworkers
and (explainable) AI systems, for example to assist in data labelling, it is vital to investigate their
perception and response to the provided explanations. We stress that crowdworkers do not capture
the particularities of all user types, e.g., domain experts. We discuss this limitation in Section 6.4.
Following the task introduction, we assessed whether the participants had actually read and

understood the task through two questions: ‘How is Body Mass Index calculated?’ for the Obesity
dataset and ‘Why is recidivism risk calculated?’ for COMPAS. We found a total of 40 incorrect
answers and replaced these participants from our study with new participants.

5 RESULTS
We present our findings in three sections. We begin by studying the impact of the domain (i.e.,
dataset), explanation technique, and representation on users’ comprehension in Section 5.1. Then,
we assess the influence of these factors on users’ confidence in the AI agent in Section 5.2. We
explore the correlation between behavioural and perceived measurements in Section 5.3. All the
experimental resources of our study are available on Github6.
To discern the factors that impact users’ confidence and comprehension of our AI agents,

we employed a linear model and an ANOVA analysis for each application domain (recidivism
and obesity). The linear model uses demographic data (age, gender, education level) along with

6https://anonymous.4open.science/r/user_eval-1776
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Understanding

Recidivism Obesity

Self-Reported Behavioural Self-Reported Behavioural

Immediate Final Precision Recall Immediate Final Precision Recall
Technique 0.87 1.20 16.24∗∗∗ 1.58 3.75∗ 1.35 31.42∗∗∗ 6.37∗∗∗

Representation 0.96 0.36 0.13 3.00 0.14 0.55 0.05 2.85
Age 1.07 0.01 1.88 0.10 0.16 0.06 6.41∗ 0.02
Education 1.63 0.93 0.94 0.43 0.50 0.34 0.25 1.31
Gender 0.54 1.07 0.35 0.30 0.14 0.03 0.18 0.36
Technique:Representation 0.28 0.87 1.12 0.74 0.48 0.16 0.35 4.99∗∗
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

Table 1. F value of the ANOVA Table with understanding measurements grouped for each domain by self-
reported and behavioural metrics. ‘Technique:Representation’ denotes the interaction between explanation
technique and visual representation.

explanation technique and visual representation as predictive variables. These predictors were
categorised to fit the linear model. For each statistically significant predictor, we conduct a post
hoc analysis using t-tests with Bonferroni correction to discern statistical differences for each pair
of categories of the predictive variables—which we depict with box plots.

5.1 Comprehension
The ANOVA F-scores of each predictor and target comprehension metric can be found in Table 1.
We first observe that the users’ self-reported understanding of the AI system—based on a post
questionnaire (Final)—does not vary across the different explanation techniques, visual representa-
tions, and demographic categories. These observations hold for both domains. Conversely, when
we focus on the self-reported comprehension right after seeing the explanations (Immediate),
we observe a statistically significant effect (p<0.05) for the explanation technique in the Obesity
dataset. Concerning behavioural comprehension, Table 1 highlights that precision is significantly
affected by the explanation method in both domains (p<0.001), whereas a significant impact on
recall is only observed in the Obesity dataset.

Fig. 4. Perceived understanding of the users (Immediate) for both the Obesity and Recidivism domains
based on the explanation technique.

Figure 4 depicts the users’ perceived comprehension of the AI system across the explanation
methods for both domains. Users confronted with rule-based explanations in the obesity domain
report a better understanding of the model w.r.t. the control group.
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Fig. 5. Precision and recall between the features indicated as important by the users for the AI’s prediction
and the features indicated in the explanation. Results are shown for each explanation technique and domain.

Figure 5 depicts the precision and recall across domains and explanation methods, revealing that
rule-based explanations yield the highest precision score in the obesity domain (median precision
of 0.9). On the contrary, counterfactual explanations resulted in poor performances comparable
to the control group (precision 0.3). Concerning the participants’ recall, we observed that in the
Obesity domain, participants who faced explanations obtained significantly higher recall than
participants without explanations.

confidence

Recidivism Obesity

Self-Reported Behavioural Self-Reported Behavioural

Δ Confidence Follow Prediction† Δ Confidence Follow Prediction†
Technique 1.40 0.78 0.12 0.38
Representation 0.04 0.00 8.22∗∗ 0.12
Age 0.46 2.76 0.06 0.00
Education 0.13 0.34 2.14 0.63
Gender 2.16 0.31 0.12 1.11
Technique:Representation 0.35 0.75 0.26 3.55∗
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

Table 2. F value of the ANOVA Table with confidence measurements grouped by domain and by self-reported
and behavioural metrics. ‘Technique:Representation’ refers to the interaction between the explanation
technique and representation († = the metric was computed only on the initial disagreement participants).

5.2 Confidence
We now assess users’ confidence in the AI system and report the corresponding F-values in Table 2.
Our ANOVA analysis suggests that changes in self-reported confidence before and after seeing the
explanation (Δ Confidence) are significantly impacted by the explanation visual representation
in the Obesity dataset. It is noteworthy that, on average, users’ predictions aligned with the AI’s
in 56% of the cases in the COMPAS dataset, and in 39% of the cases in the Obesity dataset. Thus,
we limit our evaluation of behavioural confidence to scenarios where participants are prompted
to reconsider their own predictions. We call those participants initial disagreement participants.
We find that for the Obesity dataset, the interaction between explanation technique and visual
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Fig. 6. Difference between the self-reported confidence in the users’ prediction after and before seeing the
AI’s prediction and explanation (when provided). Results are shown for each domain and representation.
Values above zero denote an increase in confidence in the model.

Fig. 7. Proportion of time the participants change their initial prediction to follow the AI’s prediction. Results
are shown for the Obesity dataset on the combination of explanation technique and representation.

representation significantly impacts the behavioural confidence (Follow Prediction) of initial
disagreement participants.
Figure 6 shows that in the Obesity domain, participants exposed to a graphical representation

report an increased confidence in their predictions after facing the explanation. Further examination
reveals that in the Obesity domain, participants with higher educational attainment, who initially
disagreed, experienced a decrease in confidence. Conversely, in the Recidivism domain, we observed
that the confidence of female participants increased less compared to male participants when the
AI confirmed their initial prediction.

Finally, Figure 7 showcases the average users’ behavioural confidence for different explanation
methods and representations in the Obesity dataset. We observe that for textual representations,
users with counterfactual explanations are more prone to follow the AI system’s prediction than
participants with rule-based explanations. This suggests that users with rule-based explanations
have lower confidence in the model’s prediction.

5.3 Perception vs. Behaviour
We study the agreement between the self-reported and behavioural measurements defined in Sec-
tion 4.2.We thus report the Pearson correlation between perceived confidence (resp. comprehension)
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and behavioural confidence (comprehension). We observe correlation scores of 0.43 and 0.49 be-
tween the perceived confidence when facing an explanation (Δ Confidence) and the proportion of
users following the AI’s prediction (Follow Prediction) for the COMPAS and Obesity datasets,
respectively. This suggests a moderate positive correlation between these two measurements. In
contrast, our results indicate no correlation between users’ perceived understanding (Immediate)
or (Final) and their actual comprehension of the model, as measured by the precision and recall
scores.

6 DISCUSSION
In the discussion, we address key findings, draw design lessons for XAI practitioners, highlight
limitations, and outline future perspectives.

6.1 Impact of Explanation Technique
We assessed the effects of three explanation techniques on participants’ confidence and compre-
hension of two AI models (RQ1). Our findings are in line with existing work and support our
general hypothesis (H1), namely that explanations increase both (a) the users’ comprehension
of the AI model and, (b) the confidence in the model’s predictions. The study also confirms our
second hypothesis, i.e., rule-based explanations are the most effective way to explain the inner
workings of an AI system. This also stands in line with existing results [6, 64]. We surmise that
this preference for rules is attributable to two factors: (a) its alignment with common educational
reasoning principles, and (b) the simplicity of rules. This is supported by our results for both
self-reported comprehension (Fig. 4) and precision (Fig. 5). We observe that the effects of expla-
nations on AI-assisted tasks are more pronounced for the Obesity dataset than for COMPAS. We
hypothesise that this is the result of (a) the number of features in the datasets (8 for COMPAS and
15 for Obesity), and (b) participants’ prior knowledge of the field. Having more features to grasp
makes explanations more beneficial. Also participants are unlikely to have firsthand experience
with prisoners, but they are more likely to harbour preconceptions about the causes of obesity.

On the other hand, our study reveals a precision and self-reported comprehension comparable to
the control group for counterfactual explanations. This outcome stands in stark contrast to the high
scores observed for both recall (as illustrated in Figure 5) and behavioural confidence (as shown
in Figure 7). This means that our participants tended to follow the AI model’s prediction and could
accurately identify the features mentioned in the explanation (good recall), but sometimes marked
other features as important (low precision). This means that the counterfactual explanations may
have been perceived as less complete than the others.

6.2 Impact of Representation
The influence of representation on users’ perception has been well-established [16, 77], and our
findings corroborate it (RQ2). In particular, we found that the graphical representations induce
a higher perceived confidence compared to textual representations (Figure 6). We suspect these
results stem from a cognitive bias explained by the apparent complexity of a graphical presentation.
This complexity may give the impression of a greater underlying effort, thereby increasing users’
confidence in the system.

Our findings corroborateH4 given that users’ confidence for counterfactual explanation is higher
with textual representations (Figure 7). Similarly, the post-hoc analysis on the interaction between
explanation technique and representation on participants’ recall (Table 1) suggests that textual
representation appears to ease users’ understanding of rule explanations. Our results, though, do not
support H3, that is, users’ confidence or comprehension for feature-attribution explanations is not
significantly increased with graphical representations. These results do not intend to discourage the
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use of visual representations for such explanations. Rather, they underscore the need for improved
representation techniques. This is vital to highlight since our experiment studied only one possible
visual representation, i.e., bars, which are widely used for feature-attribution explanations.

6.3 Recommendations for XAI Practitioners & Researchers
Our findings underscore the importance of user evaluation in the responsible deployment of XAI
tools. We draw a set of recommendations for XAI practitioners and researchers conducting user
studies within XAI.
We found that the mere presence of explanations has a positive impact on participants’ self-

reported and behavioural comprehension and confidence. This could be interpreted as support
for consistently augmenting AI-based systems with explanations. However, we argue that this
only holds when the explanations respond to a concrete user need, particularly in high-stakes
domains such as healthcare and law. These needs may include legal requirements or educational
purposes [8, 15]. Our experiments show that pre-conceptions and prior knowledge can elicit
scepticism towards AI systems. This phenomenon has been also observed in prior work [51], where
domain experts seem more prone to challenge AI-based recommendations than non-expert users.
Critically, our results suggest that graphical explanations can induce automation complacency,
resulting in confidence towards an AI explanation for the wrong reasons [7]. Prior work highlights
that even domain experts display an excess of confidence in AI in the presence of explanation
techniques such as feature attribution [34]. Consequently, we recommend that system designers
inform users upfront about the extent and limitations of the system’s explanations. This could
mitigate the potential impact that preconceptions, cognitive biases, and the limitations of the AI
system itself have on users’ comprehension and confidence.

Regarding the selection of an explanation paradigm, our results suggest the use of rule-based
explanations as a first proposal to describe an AI system’s reasoning. Rule-based explanations
provide a clear and concise summary of the necessary conditions for a given outcome. Nevertheless,
rule-based explanations also pose some limitations. They respond to the question of what are some
of the necessary conditions for the system to provide a given outcome and are, therefore, not a
guarantee of functional causality (i.e., 𝐴 ⇒ Obese is not the same as 𝐴 ⇔ Obese). This suggests
that the choice of an explanation paradigm is better determined by the user’s task. For example,
‘what-if’ tasks may suit counterfactual explanations better. Future work may investigate the effect
of presenting users with a combination of multiple explanation paradigms.

Finally, we argue that system designers should bear in mind both the system and explanation
complexity. We hypothesise that more input features in an AI agent may increase the perceived
benefit of explanations. It has been also documented that comprehensibility decreases with expla-
nation complexity as humans can handle at most 7±2 cognitive entities at once [18, 54]. Similarly,
we argue for initially compact explanations that can be further detailed or extended upon user
request. For example, a feature-attribution explanation could start by highlighting the top three
most influential features, grouping the remaining features in a single bucket and allowing users to
explore the full feature list if desired.

6.4 Limitations & Future Work
We identified several limitations related to the studied application domain and our participant
sample. We resorted to crowdworkers as participants, given their increasing role in the training of
and interaction with AI systems. While our participants faced stereotypical decision scenarios, our
results may not be directly transferable to domain experts or computer scientists [22, 57, 65]. Indeed,
contrary to a general audience, computer scientists may be familiar with particular explanation
styles and representations, while domain experts may hold stronger pre-conceptions about their
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domain of expertise. Furthermore, we did not assess our participants’ prior knowledge of the chosen
domains, which could affect participants’ performance. Future studies could, for example, evaluate
the effect of explanation technique and representation on different user groups with different levels
of expertise in a particular domain.

Prior research has employed questionnaires to assess how explanation techniques impact users’
comprehension [78] and how different explanation representations can influence users’ confi-
dence [83]. However, the results from the analysis of our post-questionnaire on understanding
yielded unexpectedly non-significant differences across various explanation techniques and repre-
sentations. This outcome could be explained by the fact that users only engaged with the model a
limited number of times and encountered instances that were classified differently. It is conceivable
that this limited interaction might have contributed to the absence of statistical significance in
our findings, as previously suggested by Van der Waa et al. [78]. To gain a more comprehensive
perspective on the model’s performance, a larger number of instances or instances with more
similar classifications could be included in future evaluations.
Moreover, we observed in Section 5.3, no correlation between users’ perceived understanding

(Immediate Understanding or Final Understanding) and their actual comprehension of the
model, as measured by the precision and recall scores. These findings are in line with existing
research [17, 31, 70, 82]. Understanding why users elicit confidence without the corresponding
behavioural alignment, or why they report comprehension without demonstrating it in practice
remains an interesting open research question.

We evaluated participant comprehension through a simple task, namely, the identification of the
most important features in the decision process – via the explanation. Other validation tasks could
provide additional insights into participant understanding, e.g., use the explanation to reproduce the
AI’s model behaviour on other examples, answer what-if scenarios, generating explanations [8, 40].
While such experiments could rely on our proposed framework (Figure 3), they are more complex
and demand a fully-fledged new study. We do not expect our observations about the studied
explanation paradigms to be completely portable to other tasks, e.g., what-if scenarios. This remains
an open research avenue.

The impact of graphical representation for rule-based and counterfactual explanations should be
taken with caution, as it responds to an experimental requirement: the need to control for chart type.
Bar charts, as used in our experiments, are widely employed for feature-attribution explanations
on tabular data [61]. Therefore, the effectiveness of various chart styles for representing different
explanation types deserves further investigation. This also raises the question of whether certain
explanation paradigms are best suited to specific visual representations. Finally, and considering
the insights from Hase and Bansal [31], we acknowledge that the impact of explanation techniques
on comprehension may also vary with the data modality. In our study, the AI models were trained
on tabular data. While the studied explanation techniques also apply to other data types such as
text and images, the visual representations covered in this study may not suit those data types.
Hence, further studies on other data modalities are necessary.

7 CONCLUSION
This study aims to fill the gap between the XAI and HCI communities by studying the impact of
explanations and visual representations on users’ comprehension and confidence. Our study covered
three types of explanations; feature-attribution, rule-based, and counterfactual, each presented
either graphically or as textual statements. We evaluated these in two domains: the prediction of
recidivism and the risk of obesity. Our results indicate that rule-based explanations with textual
representation are most effective for users’ comprehension. Counterfactual explanations presented
as text elicited higher levels of confidence, while the opposite was observed for feature-attribution
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and rule-based explanations. Importantly, our results are not entirely consistent across the evaluated
domains. This accentuates the opportunities and demands for future studies on the effect of user
profiles, data types, and domains on user’s perceptions when interacting with AI systems.
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SUPPLEMENTARY MATERIAL
This appendix consists of five sections aimed at providing a comprehensive overview of various
aspects related to our experimental evaluation. In Appendix A, we delve into the details of the code,
classifier, and datasets utilised in our experimental evaluation. Moving forward, Appendix B presents
a comprehensive table detailing the demographic information of our participants. Subsequently, in
Appendix C, we provide an overview of the diverse set of questions and surveys used throughout
the entire experimental process. To shed light on our approach to representing explanations and
communicating them to participants, we offer insights in Appendix D. Following that, we justify in
Appendix D some choice we made to represent explanations and how they are described to the
participants. Finally, in Appendix E, we illustrate the practical application of our various scales and
metrics using a specific participant as an example.

A CODE AND DATA PROCESSING
This section provides useful information to reproduce the presented experimental results. The
source code is available in an anonymous repository on GitHub 7.

Compas: In order to generate explanations meaningful to the users, we removed some features
and kept this subset of features {Gender, Age, Race, Juvenile felony count, Juvenile misdemeanour
count, Priors count, Charge degree, Charge description}. We also removed 508 individuals having
a charge description that occurred less than 5 times in the whole dataset. The dataset can be
downloaded online8.

Obesity: This dataset is originally composed of 16 features and a target obtained from questions
detailed in [52]. However, we removed the weight since it would be too easy for the model and the
user to predict the BMI with both the height and weight. We binaries five features: Gender, family
history with overweight, does the user smokes, calorie consumption monitoring, and does the user
frequently consumes high-caloric food. The other features were one hot encoded, the original data
can be downloaded on this link [53]9.

Table 3 contains the final number of features and instances for both datasets as used in our
experiments.

Dataset Features Instances
Numerical Categorical

Compas 1 7 5364
Obesity 2 13 2111

Table 3. Description of the datasets.

7https://anonymous.4open.science/r/user_eval-1776/README.md
8https://github.com/propublica/compas-analysis/
9https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
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B DEMOGRAPHIC INFORMATION
Table 4 outlines the demographic details of our participants, categorised by domain (Obesity or
Recidivism). It is noteworthy that the consent for information from 11 participants in the Obesity
group has been revoked.

Domain Obesity Recidivism

Factor 𝑵 % sample 𝑵 % sample

Gender
Female 66 47.14 66 47.14
Male 62 44.29 74 52.86
Prefer not to say 1 0.71 0 0.0

Consent revoked 11 7.86 0 0.0

Age
< 20 10 7.14 11 7.86
20 < 30 81 57.86 88 62.86
30 < 40 24 17.14 27 19.29
40 > 14 10.0 14 10.0

Nationality
Africa 45 32.14 37 26.43
Asia 2 1.43 2 1.43
Australia 0 0.0 1 0.71
Europe 77 55.0 82 58.57
North America 5 3.57 15 10.71
South America 0 0.0 3 2.14

Ethnicity (simplified)
Asian 2 1.43 2 1.43
Black 37 26.43 30 21.43
Mixed 10 7.14 9 6.43
Other 3 2.14 8 5.71
White 77 55.0 91 65.0

Highest education
Doctorate degree 3 2.14 1 0.71
Graduate degree 27 19.29 24 17.14
High school diploma 47 33.57 37 26.43
Technical college 3 2.14 14 10.0
Undergraduate degree 49 35.0 64 45.71

Table 4. Overview of participants’ demographic factors.
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C QUESTIONNAIRE
In our survey, we ask the online users to complete two various questionnaires, each one evaluating
a given criteria. We present in this section the question and where each questionnaire comes
from.

C.1 Understanding Scale
We now present the questions to evaluate the users’ perceived understanding of the system from
Madsen and Gregor [50]. This questionnaire is composed of 8 questions:

(1) The system uses appropriate methods to reach decisions.
(2) The system has sound knowledge about this type of problem built into it.
(3) The advice the system produces is as good as that which a highly competent person could

produce.
(4) The system makes use of all the knowledge and information available to it to produce its

solution to the problem.
(5) I know what will happen the next time I use the system because I understand how it behaves.
(6) I understand how the system will assist me with decisions I have to make.
(7) Although I may not know exactly how the system works, I know how to use it to make

decisions about the problem.
(8) It is easy to follow what the system does.

For each of these questions, Madsen and Gregor [50] recommended this 5 Likert scale:
1 2 3 4 5

I disagree strongly I disagree somewhat I’m neutral about it I agree somewhat I agree strongly

C.2 Question to verify user’s validity
We ask the user two questions in order to verify that they understand and will try efficiently to
complete the questionnaire.
Following the task introduction, we assessed whether the participants had actually read and

understood the task through two questions: ‘How is Body Mass Index calculated?’ for the Obesity
dataset and ‘Why is recidivism risk calculated?’ for COMPAS. We found 10 and 30 incorrect answers
for the first and second questions, respectively. This question had the form ‘The algorithm calculates
the risk of obesity (resp. recidivism) for an individual by;’. We asked additional users to participate in
our study until we had 20 responses for each group that validated our two understanding questions
resulting in a final set of 280 participants.
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(a) (b)

Fig. 8. Detailed presentation of the two verifying questions at the end of the Compas dataset survey.

(a) (b)

Fig. 9. Detailed presentation of the two verifying questions at the end of the obesity dataset survey.
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D EXPLANATION TECHNIQUES AND REPRESENTATIONS
In this section, we first elaborate on the representation of each explanation technique and then the
manner in which these explanations were conveyed to the participants.

D.1 Explanation Techniques
For the graphical representation of feature-attribution explanations, we made specific choices
to enhance clarity and manage complexity. Unlike standard methods that focus on a limited number
of features, we sorted features in decreasing order based on the absolute value of their attribution.
Features with attributions less than half the absolute value of the preceding feature were considered
marginal and grouped together. For example, in Appendix D.2, features impacting less than 2% are
grouped into the last bar, and their cumulative attribution score equals 1% toward the obesity class.
In the representation of rule-based explanations, we utilised stacked bars, starting with the

rule’s condition that induced the highest initial confidence in the model’s prediction. Subsequently,
we iteratively added conditions that improved the most the model’s confidence, given that existing
conditions were validated. Additionally, we omitted the background colour representing ordinal
classes due to the nature of rule-based explanations. Decision rules signify the minimum require-
ment for the model’s prediction toward one class, offering no information on the model’s behaviour
on other classes.
Consistency in representation was maintained for counterfactual explanations, employing

stacked bars. The length of each bar indicates the extent to which changing a feature’s value is
necessary to shift the model’s answer from one predicted class to another (the counterfactual
class). We begin by displaying the feature that most impacts the prediction, then, with this feature
changed, we identify the second most impactful feature, continuing until the prediction shifts
between classes.

D.2 Explanation Paragraph in Example Round
During the introduction step, specifically when participants were exposed to an explanation for
the first time, a detailed description of the visual representations was provided. This paragraph
underwent a thorough review by 20 individuals, including 9 computer scientists and 11 laypeo-
ple, to ensure comprehensiveness and effectiveness in conveying the explanation. The resulting
explanation paragraphs are detailed below.
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Rule-based. Counterfactual.

Linear.

Fig. 11. Detailed presentation of the three graphs presentation in the introduction and more precisely the
first time the participant had access to an explanation in the survey.
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E SCALES & METRICS (ILLUSTRATION FOR ONE PARTICIPANT)
In this section, we provide a detailed example of howwe employed the scales and metrics introduced
in Section 4.2 for one participant from the rule-based explanation group. This example is designed
to provide the reader with a detailed explanation of how we assessed various facets of participant’
behaviour and perception. We recall that Figure 3 shows the times at which these parameters are
measured. For this illustration, let us refer to this participant as “User J.” User J participated in
predicting the risk of obesity in response to four distinct scenarios, and their responses are reported
in Figure 12.

Fig. 12. Example of answers from participant “User J” from the rule-based explanation group. The values
within the columns “1st User’s Confidence”, “2nd User’s Confidence”, and “Perceived Understanding” are on
a 5-Likert scale.

E.1 User’s Initial Prediction and Confidence
In Figure 12, User J’s initial predictions, scaled from 1 (no risk) to 4 (high risk), are accompanied
by their initial confidence levels, measured on a 5-point Likert scale. The Likert scale spans from
“strongly disagree” to “strongly agree.” User J’s initial predictions are shown in the “1st User’s
Prediction” column, and their initial confidence is recorded in the “1st User’s Confidence” column.

E.2 AI Model Predictions and Explanations
User J’s predictions are followed by the AI model’s predictions and associated explanations, pre-
sented as depicted in Figure 2. These explanations comprise lists of the most influential features
considered by the AI model for each prediction scenario. For example, in Figure 2, the most impor-
tant features for the feature attribution are Family member has overweight, Consumption of food
between meals, Consumption of high caloric food, Transportation used, and Calories consumption
monitoring. In contrast, for counterfactual, this is only the Family member has overweight and
Physical activity frequency while rule-based also includes the Age feature.

E.3 User’s Final Prediction and Confidence
During the task round, User J was asked to select, from the list of features, which features they
considered most important for the AI model’s prediction. Subsequently, User J was given the
opportunity to reevaluate their prediction in the “2nd User’s Prediction” column and provide their
final confidence in their prediction in the “2nd User’s Confidence” column.
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E.4 User’s Perceived Understanding
User J was also asked to rate their “Perceived Understanding” on a 5-point Likert scale to indicate
their understanding of how the model made the prediction.

E.5 Metrics Calculation
The metrics for User J’s responses were calculated as follows:

• Δ-Confidence: The Δ-Confidence was computed by subtracting the initial confidence from
the final confidence for each scenario. User J’s Δ-Confidence values are 1, 1, 2, and -1 for
the four scenarios. The average Δ-Confidence for User J is thus 3/4.

• Behavioral Trust (Follow Pred.): We assessed behavioral trust by tracking instances
where the user modified their initial prediction to match the AI model’s prediction. It is
important to note that we only considered scenarios where the user’s initial prediction
differed from the AI model’s prediction. Thus, User J modified their initial prediction to
align with the AI model’s prediction in 2 out of 3 such scenarios, resulting in a behavioral
trust score of 2/3.

• Immediate Understanding: User J’s immediate understanding is the average value of
their Likert-scale ratings for understanding across all four scenarios. In this case, it is (3 + 4
+ 5 + 1) / 4, which equals 13/4.

• Behavioral Understanding (Precision and Recall.): To measure User J’s precision and
recall, we compared the list of features they identified as important to those highlighted in
the explanation for each scenario. The precision and recall values for each scenario were
calculated as follows:

Scenario Q1: • Precision = 1/3 (User identified three features, one matched AI explanation),
• Recall = 1/2.

Scenario Q2: • Precision = 1 (User and AI explanation lists are identical),
• Recall = 1.

Scenario Q3: • Precision = 1 (User identified 2 features, both matched AI explanation),
• Recall = 2/3.

Scenario Q4: • Precision = 1/3 (User identified 1 feature, which matched AI explanation),
• Recall = 1/3.

Please note that these are simplified examples, and in practice, the lists of important features in
explanations are typically longer.

Fig. 13. Example of answers from one participant to the Understanding survey. We measure the users’
perceived comprehension of the AI system on a scale from 1 to 5.
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E.6 Post-Questionnaires
In Figure 13, we present an example of a survey measuring User J’s perceived comprehension of
the AI system. This survey was adapted from Madsen and Gregor [50] and employed a Likert scale
ranging from 1 to 5. The average of User J’s responses to the eight survey questions provides a
representation of their perceived understanding, which, in this case, is 3.5 out of 5.
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