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Knowledge Bases
Applications
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citizenOf(z, y), hasChild(z, x)  citizenOf(x, y)⇒

● Knowledge Bases
● Rule Mining

● Challenges
● The AMIE system
● Experimental 

evaluation

● Semantifying 
wikilinks
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● Fact prediction
● Domain description
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in(c, Europe), president(x, c)  male(x)⇒  [80%]
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marriedTo(x, y)  marriedTo(y, x)⇒



  

Applications of Rule Mining

● Fact prediction
● Domain description

● Finding trends in KBs

● Data engineering and maintenance
● Schema mining
● Data correction

24



  

Applications of Rule Mining

● Fact prediction
● Domain description

● Finding trends in KBs

● Data engineering and maintenance
● Schema mining
● Data correction

25

hasCapital(x, y)  in(y, x)⇒ London England

hasCapital

in

Ecuador



  

Applications of Rule Mining

● Fact prediction
● Domain description

● Finding trends in KBs

● Data engineering and maintenance
● Schema mining
● Data correction

26

hasCapital(x, y)  in(y, x)⇒ London England

hasCapital

in

Ecuador



  

Applications of Rule Mining

● Fact prediction
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● Finding trends in KBs

● Data engineering and maintenance
● Schema mining
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Goal: Mine rules that draw concrete and correct 
conclusions 



  

Challenges
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Generate counter-evidence

Counter-examples are required to evaluate the 
quality of rules
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Generate counter-evidence

directed(x, z), actor(z, y)  partner(x, y)⇒
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Generate counter-evidence

Counter-examples are required to evaluate the 
quality of rules
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Generate counter-evidence

Counter-examples are required to evaluate the 
quality of rules
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Generate counter-evidence

KBs do not store negative evidence
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How to generate counter-evidence?
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● Closed World Assumption (CWA)
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● Closed World Assumption (CWA)
● It is too restrictive most of the times
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● Closed World Assumption (CWA)
● It is too restrictive most of the times
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the Open World
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● Partial Completeness Assumption (PCA)
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PCA Confidence
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KBs are large
Dataset Facts Entities
YAGO 120M 10M

Dbpedia 6.9B 38M
Wikidata 100M 20M

Dataset # facts WARMR ALEPH
YAGO core 1M - 5s to 1d

YAGO (sample) 47K 18h 0.05s to 1d

State-of-the-art approaches do not scale
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How to mine rules efficiently?

● Start with all possible rules of the form ⇒ r(x,y)
● Refine the rules iteratively by means of mining 

operators:
– Add dangling atom (OD)

– Add closing atom (OC)

– Add instantiated atom (OI)
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How to mine rules efficiently?
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Add dangling atom
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?r(z, x)  citizenOf(⇒ x, y)

How to mine rules efficiently?

 ⇒ citizenOf(x, y)
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hasChild
influences

….
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How to mine rules efficiently?
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● Prune the search space
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1
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n
: B  r(x, y)∧



  

How to mine rules efficiently?

● Prune the search space
● Using monotonic definition of support and a threshold
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How to mine rules efficiently?

● Prune the search space
● Using monotonic definition of support and a threshold
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bornIn(z, y), citizenOf(z, y), hasChild(z, x)  citizenOf(x, y)⇒
Support = 2

support(B ⇒ r(x, y)) = #(x, y) :  z∃
1
,...z

n
: B  r(x, y)∧

Support = 3 citizenOf(z, y), hasChild(z, x)  citizenOf(x, y)⇒
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citizenOf(z, y), hasChild(z, x)  citizenOf(x, ⇒ w)

Existentially quantified
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citizenOf(z, y), hasChild(z, x)   w : citizenOf(x, w)⇒ ∃



  

How to mine rules efficiently?

● Apply a language bias that complies with our goal 
● Goal: rules that make correct and concrete predictions
● Avoid existentially quantified conclusions

● Focus on closed Horn rules
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How to mine rules efficiently?

● Apply a language bias that complies with our goal 
● Goal: rules that make correct and concrete predictions
● Avoid existentially quantified conclusions

● Focus on closed Horn rules
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citizenOf(z, y), hasChild(z, x)   w : citizenOf(x, w)⇒ ∃
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How to mine rules efficiently?

● Do not specialize rules with 100% confidence
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How to mine rules efficiently?

● Do not specialize rules with 100% confidence
● Use efficient confidence approximation
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How to mine rules efficiently?

● Do not specialize rules with 100% confidence
● Use efficient confidence approximation

● To discard rules with low confidence in advance
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Confidence approximation

● Bad rules make a lot of false predictions per entity
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● Bad rules make a lot of false predictions per entity
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Confidence approximation

● Bad rules make a lot of false predictions per entity
● Director is partnered with all actors of his movies
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Confidence approximation

● Bad rules make a lot of false predictions per entity
● They are counted in the denominator of the confidence
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Confidence approximation

● Use statistics to estimate confpca denominator
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Confidence approximation

● Use statistics to estimate confpca denominator
● (# of actors per director)  (# of partnered directors)⨉
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Confidence approximation

● Use statistics to estimate confpca denominator
● (# of actors per director)  (# of partnered directors)⨉
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director(x, z), actor(z, y)  partner(x, y)⇒

Avg # movies per director Avg # actors per movie

confpca(B ⇒ r(x, y)) = 
support(B ⇒ r(x, y))

#(x, y) : director(x, z)  actor(z, y) ∧  
∧ partner(x, y’)

⨯
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Confidence approximation

● Use statistics to estimate confpca denominator
● (# of actors per director)  (# of partnered directors)⨉
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director(x, z), actor(z, y)  partner(x, y)⇒

Avg # movies per director Avg # actors per movie

Actors can play in several 
movies of the same director

confpca(B ⇒ r(x, y)) = 
support(B ⇒ r(x, y))

#(x, y) : director(x, z)  actor(z, y) ∧  
∧ partner(x, y’)

⨯
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Confidence approximation

● Use statistics to estimate confpca denominator
● (# of actors per director)  (# of partnered directors)⨉
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director(x, z), actor(z, y)  partner(x, y)⇒

Avg # movies per director
Avg # actors per movie

Avg # movies per actor

confpca(B ⇒ r(x, y)) = 
support(B ⇒ r(x, y))

#(x, y) : director(x, z)  actor(z, y) ∧  
∧ partner(x, y’)

⨯
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Confidence approximation

● Use statistics to estimate confpca denominator
● (# of actors per director)  ⨉ (# of partnered directors)
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director(x, z), actor(z, y)  partner(x, y)⇒

partner

overlap between director
and partner relation

confpca(B ⇒ r(x, y)) = 
support(B ⇒ r(x, y))

#(x, y) : director(x, z)  actor(z, y) ∧  
∧ partner(x, y’)



  

Confidence approximation

● If estimation is below threshold, discard the rule.
● (# of actors per director)  (# of partnered directors)⨉

96

director(x, z), actor(z, y)  partner(x, y)⇒

...

director

actor

actor

actor

confpca(B ⇒ r(x, y)) = 
support(B ⇒ r(x, y))

Estimated denominator



  

AMIE: Association Rule Mining Under 
Incomplete Evidence

KB 11

Concurrent mining implementation

Tailored In-memory DB

97



  

AMIE's runtime

AMIE is 3 order of magnitude faster than state-of-
the-art approaches.

Dataset # facts WARMR ALEPH AMIE
YAGO core 1M - 5s to 1d 3.17min

YAGO (sample) 47K 18h 0.05s to 1d 2.59s, 2.90s
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AMIE's runtime

Dataset Facts Relations Runtime Rules
YAGO2

948K 32
28.19s 138

YAGO2 (const) 9.93min 18K
YAGO2 (l=4) 8.35min 6.9K

YAGO2s 4.12M 37 59.38min 94
Dbpedia 2.0 6.7M 1595 46.88min 113K
Dbpedia 3.8 11.02M 650 7h 6min 2.47K

Wikidata 8.4M 431 25.50min 889

AMIE can mine rules in large ontologies up to 
11M facts and more than 1500 relations.
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AMIE's output quality

PCA confidence suitable at ranking predictive 
rules.
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Some rules found by AMIE

● YAGO
● hasWonPrize(x, Leibniz Prize) ⇒ livesIn(x, Germany)
● hasAdvisor(x, y), graduatedFrom(x, z) ⇒ worksAt(y, z)

● DBpedia
● countySeat(x, y)  largestCity(x, y)⇒

● Wikidata
● relative(y, z), sister(z, x)  relative(x, y)⇒

101



  

Summary

102

● Pruning strategies in combination with custom 
DB implementation allow for scalable rule mining

● PCA more suitable at generating counter-evidence



  

Summary

Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. 
AMIE: Association Rule Mining Under Incomplete Evidence in Ontological Knowledge Bases. 
 WWW, 2013. Best student paper award.

Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. 
Fast Rule Mining in Ontological Knowledge Bases with AMIE+. 
VLDB Journal.
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● Pruning strategies in combination with custom 
DB implementation allow for scalable rule mining

● PCA more suitable at generating counter-evidence



  

Applications of Rule Mining

104



  

Semantifying wikilinks

105



  

Semantifying wikilinks

● KBs store the hyperlinks structure of Wikipedia 
articles

106



  

Semantifying wikilinks
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● KBs store the hyperlinks structure of Wikipedia 
articles

Barack Obama Nobel Peace Prize

linksTo
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● KBs store the hyperlinks structure of Wikipedia 
articles

● Usually the semantics of the relation are unknown

Barack Obama Nobel Peace Prize

linksTo



  

Semantifying wikilinks

109

● KBs store the hyperlinks structure of Wikipedia 
articles

● Usually the semantics of the relation are unknown
● These are the unsemantified wikilinks

?

Barack Obama Nobel Peace Prize

linksTo



  

Semantifying wikilinks

110

● KBs store the hyperlinks structure of Wikipedia 
articles

● Often the semantics of the relation are unknown
● These are the unsemantified wikilinks

wonPrize

Barack Obama Nobel Peace Prize

linksTo

Goal: Find the relations that hold between the 
endpoints of wikilinks.



  

Approach

Use semantified wikilinks to learn rules. 
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Approach

linksTo

Nobel Peace 
Prize

wonPrize

Use semantified wikilinks to learn rules. 

Al Gore 
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Politician

type type

Prize 



  

Approach

linksTo

Nobel Peace 
Prize

wonPrize

Use semantified wikilinks to learn rules. 

Al Gore 
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Politician

type type

Prize 

linksTo(x, y), type(x, Politician), type(y, Prize) ⇒ wonPrize(x, y)



  

Approach

Apply rules to predict the meaning of wikilinks

Barack Obama Nobel Peace Prize

linksTo

114

linksTo(x, y), type(x, Politician), type(y, Prize) ⇒ wonPrize(x, y)



  

Approach

Apply rules to predict the meaning of wikilinks
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linksTo(x, y), type(x, Politician), type(y, Prize) ⇒ wonPrize(x, y)

Barack Obama Nobel Peace Prize

linksTo

wonPrize



  

Experimental evaluation

116



  

Wikilinks semantification

● Experiments on DBpedia 3.8
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Wikilinks semantification

● Experiments on DBpedia 3.8
● 2M+ wikilinks, 18M facts in total
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● AMIE for rule mining
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Wikilinks semantification

● Experiments on DBpedia 3.8
● 2M+ wikilinks, 18M facts in total

● AMIE for rule mining
● 3500+ semantification rules
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Wikilinks semantification

● Experiments on DBpedia 3.8
● 2M+ wikilinks, 18M facts in total

● AMIE for rule mining
● 3500+ semantification rules

● 180K unsemantified wikilinks
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Wikilinks semantification

● Experiments on DBpedia 3.8
● 2M+ wikilinks, 18M facts in total

● AMIE for rule mining
● 3500+ semantification rules

● 180K unsemantified wikilinks
● For each wikilink we generated a ranking of possible 

relations.
● 77% precision @top1, 67% @top3
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Summary: Wikilinks

Luis Galárraga, Danai Symeonidou, Jean-Claude Moissinac.
Rule Mining for Semantifying Wikilinks. 
In LOWD, 2015
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Rule Mining is an effective method for the 
semantification of wikilinks



  

Schema Alignment

124



  

Schema Alignment

Barack Obama

President Obama

bornInState

125

KBs in the semantic web speak in different 
“languages” about the same things. 

Hawaii

bornInCity

State of Hawaii

locatedIn

Honolulu



  

Schema Alignment
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Some instances has been aligned.

Barack Obama

President Obama

bornInState

Hawaii

bornInCity

State of Hawaii

locatedIn

Honolulu

sameAs sameAs



  

Schema Alignment

127

This does not suffice for a full data integration

Barack Obama

President Obama

bornInState

Hawaii

bornInCity

State of Hawaii

locatedIn

Honolulu

sameAs sameAs



  

Schema Alignment

128

This does not suffice for a full data integration

Barack Obama

President Obama

bornInState

Hawaii

bornInCity

State of Hawaii

locatedIn

Honolulu

sameAs sameAs

Goal: Find schema alignments between two KBs 



  

Approach

129

Use instance alignments to “coaleasce” the KBs.

129

Barack Obama

President Obama

bornInState

Hawaii

bornInCity

State of Hawaii

locatedIn

Honolulu

sameAs sameAs



  

Approach
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Use instance alignments to “coaleasce” the KBs.

130

Barack Obama

bornInState

Hawaii
bornInCity

locatedIn

Honolulu



  

Approach

131

Mine alignment rules on the coalesced KB

131

Barack Obama

bornInState

Hawaii
bornInCity

locatedIn

Honolulu

AMIEAMIE



  

Approach
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Mine alignment rules on the coalesced KB

132

Barack Obama

bornInState

Hawaii
bornInCity

locatedIn

Honolulu

AMIEAMIE

bornInCity(x, z), locatedIn(y, z) ⇒ bornInState(x, y)



  

ROSA rules

d:artist(x, y)  ⇒ y:created(x, y) R-subsumption

d:nationality(x, y)  ⇔ y:citizenOf(x, y) R-equivalence

type(x, Athleted)  ⇒ type(x, Persony) C-subsumption

y:bornIn(x, y), y:label(y, z)  ⇒ i:bornIn(x, z) 2-hops translation

y:child(x, y), y:child(x, z)  ⇒ f:sibling(y, z) Triangle alignment

y:bornIn(x, y), type(x, City
y
)  ⇒ f:birthPlace(x, y) Specific R-subsumption

y:locatedIn(x, Italy)  ⇒ d:timeZone(x, CET) Attribute-Value translation

type(x, Royal
f
), f:gender(x, female)  ⇒ type(y, Princess) 2-values translation
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ROSA rules

134

d:artist(x, y)  ⇒ y:created(x, y) R-subsumption

d:nationality(x, y)  ⇔ y:citizenOf(x, y) R-equivalence

type(x, Athleted)  ⇒ type(x, Persony) C-subsumption

y:bornIn(x, y), y:label(y, z)  ⇒ i:bornIn(x, z) 2-hops translation

y:child(x, y), y:child(x, z)  ⇒ f:sibling(y, z) Triangle alignment

y:bornIn(x, y), type(x, City
y
)  ⇒ f:birthPlace(x, y) Specific R-subsumption

y:locatedIn(x, Italy)  ⇒ d:timeZone(x, CET) Attribute-Value translation

type(x, Royal
f
), f:gender(x, female)  ⇒ type(y, Princess) 2-values translation

Complex alignments suffer from low 
precision and the presence of 

soft-rules 



  

ROSA rules

d:artist(x, y)  ⇒ y:created(x, y) R-subsumption

d:nationality(x, y)  ⇔ y:citizenOf(x, y) R-equivalence

type(x, Athleted)  ⇒ type(x, Persony) C-subsumption

y:bornIn(x, y), y:label(y, z)  ⇒ i:bornIn(x, z) 2-hops translation

y:child(x, y), y:child(x, z)  ⇒ f:sibling(y, z) Triangle alignment

y:bornIn(x, y), type(x, City
y
)  ⇒ f:birthPlace(x, y) Specific R-subsumption

y:locatedIn(x, Italy)  ⇒ d:timeZone(x, CET) Attribute-Value translation

type(x, Royal
f
), f:gender(x, female)  ⇒ type(y, Princess) 2-values translation
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Luis Galárraga, Nicoleta Preda, Fabian Suchanek. 
Mining Rules to Align Knowledge Bases.  
AKBC 2013.



  

Canonicalizing Open Knowledge 
Bases

136



  

Open Knowledge Bases

● Normally extracted from text
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Open Knowledge Bases

● Normally extracted from text
● Entities and relations are not canonical
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Open Knowledge Bases

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 
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● Normally extracted from text
● Entities and relations are not canonical

President Obama



  

Open Knowledge Bases

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 
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● Normally extracted from text
● Entities and relations are not canonical

President Obama

Goal: Take an open KB and rewrite its entities 
and relations in a canonical form 



  

Approach
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● Two stages process

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Approach
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● Two stages process
● Canonicalize the noun phrases, then the verbal phrases 

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Use a group of signals of synonymy

143

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Use a group of signals of synonymy
● Example: attributes overlap

144

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Use a group of signals of synonymy
● Example: attributes overlap, tokens overlap

145

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Simple signals
● Attribute overlap
● String equality or similarity
● IDF Tokens Overlap

● Source signals
● Words overlap
● Entities overlap
● Types overlap

● Combined signal



  

Noun phrase canonicalization

● Use signals to cluster synonym noun phrases

147

=
Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Use signals to cluster synonym noun phrases
● Agglomerative Clustering

148

Barack Hussein 
Obama

=

=
Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 

President Obama



  

Noun phrase canonicalization

● Use signals to cluster synonym noun phrases
● Agglomerative Clustering

149

Barack ObamaPresident Obama

Barack Hussein 
Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 



  

Noun phrase canonicalization

Pick one noun phrase to canonicalize all mentions

150

Barack ObamaPresident Obama

Barack Hussein 
Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

earned degree from 



  

Noun phrase canonicalization

Pick one noun phrase to canonicalize all mentions

151

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from



  

Verbal phrase clustering

Rely on canonicalization of the noun phrases

152

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from



  

Verbal phrase clustering

153

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

Apply rule mining on the semi-canonicalized KB

AMIEAMIE



  

Verbal phrase clustering
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Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

AMIEAMIE

Apply rule mining on the semi-canonicalized KB

earned degree from  ⇔ is a graduated of



  

Verbal phrase clustering

155

Barack Obama

is a graduate of 

Harvard Law 
School

earned degree 
from

AMIEAMIE

Pick one verbal phrase for the canonicalization

earned degree from  ⇔ is a graduated of



  

Verbal phrase clustering
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Barack Obama

Harvard Law 
School

earned degree 
from

Pick one verbal phrase for the canonicalization



  

Experimental evaluation
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Canonicalization of noun phrases

158

Signal Macro Micro Pairwise
Str identity 51% 84% 71%
Str. Similarity 51% 83% 67%
IDF token overlap 57% 88% 79%
Attr. Overlap 15% 28% 5%
Entity overlap 63% 78% 61%
Type overlap 62% 76% 56%
Word overlap 55% 76% 56%
Simple ML 55% 86% 78%
Full ML 61% 79% 46%

F1 measure of the signals on an open KB (with 
polysemy) constructed with Reverb on Clueweb09



  

Canonicalization of verbal phrases

159

Dataset Precision Coverage
Reverb 94% 15%

Reverb (types) 98% 21%

Performance of verbal phrase clustering on Reverb 
dataset taken from Clueweb09.



  

Canonicalization of verbal phrases

160

Some clusters of verbal phrases could be linked to 
Freebase relations

Cluster Freebase

location.country.official_language

be bought, acquire organization.organization.acquired_by

be spoken in, be the official 
language of, be the national 

language of 



  

Summary

161

Luis Galárraga, Geremy Heitz, Kevin Murphy, Fabian Suchanek. 
Canonicalizing Open Knowledge Bases. 
In CIKM, 2014

● Simple signals such as the tokens overlap are 
effective at identifying synonym noun phrases.

● Rule mining plus instance information can find 
clusters of close verbal phrases with high 
precision. 



  

Predicting Completeness
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Predicting completeness in KBs

● KBs are highly incomplete
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Predicting completeness in KBs

● KBs are highly incomplete
● 2% of people have a father in Wikidata 

164



  

Predicting completeness in KBs

● KBs are highly incomplete
● 2% of people have a father in Wikidata

● We do not know where the incompleteness lies 
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Predicting completeness in KBs

● KBs are highly incomplete
● 2% of people have a father in Wikidata

● We do not know where the incompleteness lies
● A person without spouse in the KB could be incomplete 

or single
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Predicting completeness in KBs

● KBs are highly incomplete
● 2% of people have a father in Wikidata

● We do not know where the incompleteness lies
● A person without spouse in the KB could be incomplete 

or single

● Problems for data producers and consumers
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Predicting completeness in KBs

● KBs are highly incomplete
● 2% of people have a father in Wikidata 

● We do not know where the incompleteness lies
● A person without spouse in the KB could be incomplete 

or single

● Problems for data producers and consumers
● Consumers: no completeness guarantees for queries

● Producers: which parts of the KB need to be populated?

168



  

Completeness

● Defined with respect to a query q via a complete 
hypothetical KB K* 
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Completeness

● Defined with respect to a query q via a complete 
hypothetical KB K*
● A query q is complete in K, iff q(K*)  q(K)⊆
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Completeness

● Defined with respect to a query q via a complete 
hypothetical KB K*
● A query q is complete in K, iff q(K*)  q(K)⊆

● We focus on queries of the form
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SELECT ?x { subject relation ?x }



  

Completeness

● Defined with respect to a query q via a complete 
hypothetical KB K*
● A query q is complete in K, iff q(K*)  q(K)⊆

● We focus on queries of the form

SELECT ?x { subject relation ?x }

hasChild

hasChild
Barack 
Obama

Malia

Sasha

Does the KB know
all the children of
Barack Obama?
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Completeness

● Defined with respect to a query q via a complete 
hypothetical KB K*
● A query q is complete in K, iff q(K*)  q(K)⊆

● We focus on queries of the form

SELECT ?x { subject relation ?x }

hasChild

hasChild
Barack 
Obama

Malia

Sasha

Does the KB know
all the children of
Barack Obama?
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Goal: Study different signals to predict if a query  
of the form {o : r(s, o) } is complete in a KB 



  

Completeness oracles

● Function that assigns a completeness value to pairs 
subject-relation (s, r)   
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Completeness oracles

● Function that assigns a completeness value to pairs 
subject-relation (s, r)
● PCA oracle: (s, r) is complete if the KB knows at least 

one object o    
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Completeness oracles

● Function that assigns a completeness value to pairs 
subject-relation (s, r)
● PCA oracle: (s, r) is complete if the KB knows at least 

one object o    

176

Complete instances in 
the domain of hasChild



  

Completeness oracles

● Function that assigns a completeness value to pairs 
subject-relation (s, r)
● PCA oracle: (s, r) is complete if the KB knows at least 

one object o    
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Complete instances in 
the domain of hasChild

PCA oracle



  

Completeness oracles

Oracles have certain precision and recall
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Complete instances in 
the domain of hasChild

PCA oracle



  

Completeness oracles

Oracles have certain precision and recall

PCA oracle
Precision = 2/3
Recall = 2/5

179

Complete instances in 
the domain of hasChild

PCA oracle



  

Completeness oracles

● CWA: cwa(s, r) = true
● PCA: pca(s, r) =  o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o))  k≥  

● Popular entities: popularitypop(s, r) = pop(s)  

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) =  i  {1,..,n} :∀ ∊   o : r∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● AMIE
180



  

Completeness oracles

181

Learned 
oracles

● CWA: cwa(s, r) = true
● PCA: pca(s, r) =  o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o))  k≥  

● Popular entities: popularitypop(s, r) = pop(s)  

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) =  i  {1,..,n} :∀ ∊   o : r∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● AMIE



  

Learned oracles

182

● Based on completeness rules



  

Learned oracles
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● Based on completeness rules
● Learned with AMIE from a set of completeness 

annotations complete(s, r) and incomplete(s, r)



  

Learned oracles

184

● Based on completeness rules
● Learned with AMIE from a set of completeness 

annotations complete(s, r) and incomplete(s, r)
notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒



  

Learned oracles

185

● Based on completeness rules
● Learned with AMIE from a set of completeness 

annotations complete(s, r) and incomplete(s, r)

● Annotations obtained by two means:

– Automatic: e.g., everyone must have a nationality

– Crowd-sourcing: ask mechanical turks for more objects in the 
web

notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒



  

AMIE Oracle

186

● It uses learned rules to predict completeness



  

AMIE Oracle

187

● It uses learned rules to predict completeness
● In case of contradictions, predictions with higher 

confidence and support prevail



  

Experimental evaluation

188



  

Evaluating oracles

Relation CWA PCA Class AMIE
diedIn 60% 22% 99% 96%
directed 40% 96% 0% 100%
graduatedFrom 89% 4% 92% 87%
hasChild 71% 1% 78% 78%
hasGender 78% 100% 95% 100%
hasParent 1% 54% 0% 100%
isCitizenOf 4% 98% 5% 100%
isConnectedTo 87% 34% 88% 89%
isMarriedTo 55% 7% 57% 46%
wasBornIn 28% 100% 0% 100%

F1 measure of the oracles in YAGO3
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Summary

● It is possible to predict completeness in KBs with 
100% precision 
● By combining different simple oracles (signals)

● Future work: 
● More signals of completeness, completeness predictions 

for rule mining.
Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian Suchanek. 
Predicting completeness in Knowledge Bases. 
Under Review. 
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Final conclusion

191



  

Final conclusion

● Rule Mining is about making sense out of semantic 
knowledge. 

● Rule Mining can:
● Produce insights about the data (AMIE)
● Predict missing data (wikilinks)
● Align the schemas of KBs
● Cluster synonym verbal phrases
● Predict completeness

● With the goal of making computers even smarter 
and more helpful to humans. 192
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