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Abstract

Efficient rule mining on large modern knowledge graphs (KGs) is
a major challenge due to the exponential search space. Current
systems — especially those aiming for exhaustive mining — remain
resource- and time-consuming. In this paper, we propose Mini-
AMIE, a rule mining approach based on the AMIE algorithm, which
restricts AMIE’s language bias and estimates key rule metrics using
fast approximations. Our experiments on several KGs illustrate
the trade-offs of this design and show that MiniAMIE achieves a
substantial speed-up while maintaining some good-quality rules.

CCS Concepts

« Computing methodologies — Logic programming and answer
set programming.
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1 Introduction

Rule mining on knowledge graphs (KGs) is crucial in tasks such
as knowledge inference, data completion, and KG compression, as
well as in Al explainability. It is also computationally challenging
due to the size of current KGs. This observation has motivated
several research endeavors to extract logical rules, usually Horn
rules, from very large KGs [1-4, 6] containing millions of entities
and billions of facts. While this is good news for data providers
and consumers, modern rule mining systems still require powerful
computing resources, not available to everyone. The reasons are
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threefold. First, rule mining entails the exploration of an exponen-
tially large space of candidate rules. Second, for each of those rules,
mining algorithms must execute expensive queries to estimate rule
quality. Third, speed-up usually relies on heavy in-memory index-
ing. Anytime algorithms [4] provide a solution to the first challenge
as they allow exploration within a time budget, trading efficiency
for exhaustivity. Another solution is to restrict the rule language
bias so that fewer candidate rules are explored [4]. Sampling and
approximative approaches for rule quality metrics can mitigate the
second challenge at the expense of metric accuracy and predictive
power, whereas the third challenge can be alleviated by relying on
either (hybrid) in-disk storage solutions or more lightweight in-
memory indexing, the former strategy known to be in tension with
runtime [3, 6]. This article explores different approximative tech-
niques applied to a well-known exhaustive rule mining algorithm:
AMIES3 [3]. Our lightweight version of AMIE, called mini-AMIE
restricts AMIE’s language bias to closed paths (first challenge), pro-
poses a fast approximation, based on independence assumptions,
for the support and confidence of rules (second challenge), and
drops some of AMIE’s indexes as a consequence of the previous
simplifications (third challenge). Our evaluation aims to answer
three research questions: (i) what are the runtime and memory gains
of restricting the language bias to closed paths and approximating
rule metrics on KGs?; (ii) how well can rule support and confidence
be approximated by the means of join counts and independence
assumptions?; (iii) how much link prediction performance do we
lose by using the studied techniques?

2 Related Work

Extracting rules from KGs is the central goal of Inductive Logic
Programming (ILP) [5]. However, early ILP systems are unsuitable
for modern KGs because of their limited scalability and incompati-
bility with the open world assumption. AMIE [2] was the first rule
mining approach suitable for large and potentially incomplete KGs.
AMIE is an exhaustive top-down algorithm focused on closed Horn
rules. Its successors [1, 3] proposed a handful of novel heuristics
to speed-up search, including fast confidence approximations to
prune bad rules in advance and a lazy evaluation routine for con-
fidence. RudiK [6] extends AMIE’s language bias to include rules
with negated atoms (useful for data correction) but drops out the ex-
haustivity constraint — like in traditional ILP. AnyBURL [4] on the
other hand, is an anytime bottom-up algorithm that mines closed
path rules from samples of subgraphs within a time budget.
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3 Preliminaries

Knowledge Graphs. A knowledge graph (KG) is a set K of assertions
or facts (S, P,0) € ExXPXE, also denoted as P(S, O), where & is a
set of entities and P is a set of binary relations or predicates. Thus,
KGs model statements, such as capital( Germany, Berlin), and can
also be seen as labeled directed graphs that connect node entities
via relation edges. Given a relation r € P, we define its inverse
r~1={(0,8) : r(S,0) € K}.

Atoms and Rules. An atom is a fact where at least one of the argu-
ments is replaced by a variable v € V, where VN (EUP) = 0. For
instance, B = livesIn(x, y) is an atom while x and y are variables.
By convention, we write for S and O in a fact P(S, O), variables
in lowercase and entities (constants) in uppercase. An instantia-
tion: : V — & is a partial mapping from variables to constants
in a KG. Applying an instantiation : to an atom B — denoted by
1(B) - replaces the variables in B with their associated constants in
the mapping resulting in another atom or in a fact (then called a
grounded atom). If an atom has a single constant argument like in
speaks(x, Danish), we say it is an instantiated atom. Instantiations
can be naturally extended to arbitrary logical formulae on atoms.
A Horn rule is an expression of the form R : B = H where the
body B = A\ 1<;<p Bi is a conjunction of atoms and the head H is a
single atom. A rule is safe if the head variables also appear in the
rule’s body. Safe rules allow for concrete predictions. In this work
we focus on closed rules, i.e., safe rules where each variable appears
at least in two different atoms. When each variable appears exactly
in two atoms we say the rule is a closed path rule as there exists
a unique path connecting every pair of variables in the rule as in
companySeat(x, z) A cityIn(z, y) = companyCountry(x, y).

Predictions and Metrics. Rules convey regularities that hold in a KG
and that can be used to extract axiomatic knowledge or to infer
new assertions. These tasks, however, require measuring the extent
to which that regularity holds in the KG. Given a mapping : and a
rule R : B = H, we say that 1 is a match of R iff 1(B;) € K for every
i € {1,...,n}, which we denote by 1 ~ B. If 1((H) € K we say ((H)
is an observed prediction of R and 1 is a full match of R — written
1 ~ R or equivalently : ~ B A H. The support of a rule R in a KG K
is the number of unique observed predictions of R, defined as:

supp(B = H) = |tjogr) 1t ~ (BAH)| = |yg ~ (BAH)|.

The expression 1|y (f7), simplified 177, denotes the projection of the
mapping ¢ on v(H), the variables in the rule’s head. The support is a
measure of significance. A rule with very few observed predictions
will very likely constitute noise, but many observed predictions do
not still guarantee that the rule is reliable to make inferences. That
is the goal of the confidence metric:

supp(B = H)

conf(B=H) = B = i) + (4 ~ B) A~ ()]

Here, 1 is a Boolean function that returns true when a fact is not
known to be false. Rule miners make different assumptions about 7,
leading to different confidence scores. AMIE, for instance, uses the
PCA (Partial Completeness Assumption) confidence [2].
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4 MiniAMIE: Quick and Dirty Rule Mining

We now elaborate on the MiniAMIE approach. But, we first intro-
duce the original AMIE algorithm.

4.1 The AMIE Algorithm

AMIE [2] is a top-down exhaustive rule mining approach designed
to find closed Horn rules in large KGs under the open world as-
sumption. AMIE seeds the search with general rules of the form
T = r(x,y), which are then iteratively refined in a breadth-first-
search manner by means of three mining operators:

Add dangling atom, Op(R). It returns duplicates of R with an
extra atom that has a common variable with R and a fresh variable.
Add closing atom, O¢(R). It returns duplicates of R with a new
atom that shares both variables with R.

Add instantiated atom, O;(R). It returns duplicates of R with a
new instantiated atom that shares a variable with R.

Algorithm 1 describes the AMIE algorithm. The algorithm uses a
customized in-memory database with many indexes on facts (SPO,
SOP, PSO, POS, OSP, OPS) and count aggregates per triple compo-
nent (S, P, O) to optimize support and confidence calculations for
rules. For more details about the multiple optimizations proposed
to the base routine we refer the reader to [1-3].

Algorithm 1 AMIE

Require: a KB: K, support, confidence and length thresholds: 6, y, I
Ensure: set of closed Horn rules:
Lqe—[T=2rn(xy), T=2r(y),...; R<0
while g # 0 do
R « g.dequeue()
if closed(R) A pea-conf(R) > A then
R — RU{R}
end if
forall R. € (Op U Oc U Or)(R) A|R:| <A supp(R:) > 6 do
g.enqueue(R.)
end for
end while

=
e

1: return X

—_

4.2 MiniAMIE

MiniAMIE! implements two important simplifications to Alg. 1 to
speed-up rule mining.

Restricting the language bias. We restrict the search to closed path
rules as they are less numerous than closed rules and are known to
retain good predictive power [4]. These are rules of the form:

rn (%, Xn) A ( /\ ri(xi,Xi—1)) Ari(x1,y) = rp(xy).
n>i>1

AnyBurl [4] focuses on closed-path rules but also mines non-closed

(but still safe) rules with instantiated atoms, e.g., wonPrize(y, z) A

actedIn(x,y) = wonPrize(x, Emmy). We exclude those so that our

language bias lies at the intersection of AMIE’s and AnyBurl’s.

1Code & experimental data at https://github.com/dig-team/AMIE/tree/mini-amie
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Approximating support and confidence. The support and confidence
calculations in lines 4 and 7 of Alg. 1 may lead to expensive count
queries. We therefore devise a fast approximation of those metrics
for closed path rules. We first observe that rule support can be
written as follows:

supp(B = H) = |y ~ H| X P(1 ~ Blyyg ~ H). (1)

The first term is the number of unique matches of the rule’s head
atom, whereas the second term is the head coverage, the proba-
bility that an instantiation matches the rule’s body given that it
matches the head. Eq. (1) illustrates why support calculation can
be expensive: while the first term can be computed efficiently with
the indexes, we still have to check the existence of a body match
for each head match. We propose to estimate head coverage using
AMIE’s pre-computed data statistics. We first observe that

P(t ~ Bl ~ H) = P(t ~ rn(x,xn) A ( /\ L~ ri(xi xim1)
nxi>1

At~ri(xny) [~ rp(x,y)). @
If we consider each partial match 1 ~ r(x, -) as a random variable,
the joint distribution of those matches forms an undirected graph.
To estimate this joint probability efficiently, we assume that the
distribution follows the structure of a Markov Random Field (MRF),
which allows constant-time estimation under certain independence
assumptions. We thus assume that a match ¢ ~ r;(x, -) in the rule is
independent of all non-consecutive matches given the match of its
neighbor r;j_1 (-, x’). That way we can factorize Eq. (2) as:

P(t~Blt~H)= P(t~rp(xxp)|t ~ rp(xy’))x

1_[ P(r~ri(x],, %) At~ rim1(Xq,X]_))X

n>i>1
P(i~ri(xf, y)e ~ rp(x’, y)). (3)
for some existentially quantified fresh variables x’, ¢/, x;l T x{. If

we now define the following terms for two relations r and r’ - using
AMIE’s join statistics [1] with dom(r) = {s : Jo : r(s,0) € K}:
_ |dom(r) N dom(r")|

é(r,r') = dom()] =P(~r(x-)|1t~7(x-)

s\ _ ldom(r) N dom(r’)|
o) = Com(r) G dom()]

we can estimate the different probabilities in Equation 3 as follows:

=P(~r(x,)A1~r(x)),

P(l ~ rﬂ(x3x;1) | L~ rh(x’ y/)) = &(rns rh)s (4)

P(i~ri(x}y, i) AL~ rici(xix_p)) = o(r; ric1), (5)

Pl ~ ri(xny) |1~ (3 9) = 607 L), (©)

Recall that in AMIE, the dangling atom operator Op produces non-

closed rules. The estimated support for these intermediate rules

resembles Eq. (3) but without the first term. This is the case because
the body joins the head atom only on variable y.

Finally, the PCA confidence of a rule can be written as follows [2]:

pea-conf(R:B = H) = P(yy ~H|t ~BAH’) 7)

where H' = rj,(x,y’). In a similar vibe we approximate the PCA
confidence of rules by:

Pt~ rp(x,y") |t~ ra(x,xp)) = 6(rp, rn) ®

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Dataset Density | Method Hits@10  MRR
AnyBurl 0.639 0.545
AMIE 0.553 0.428

yago3-10 < 0.001
MiniAMIE (full) 0454 0.421

MiniAMIE (01) ~ 05#8 0468
AnyBurl 0.509 0.320
AMIE 0499  0.321

MiniAMIE (full) ((_’6?'11336) (‘)01%‘)1)
MiniAMIE (01) 0489 0314

fb15k237 < 0.001

AnyBurl 0.542 0.274
2

oble! < 0.001 AMIE 0.393 0.188
MiniAMIE (ful) G208 %108
- 0.554 0.272
MiniAMIE (01)  (F61)  (00s9)
AnyBurl 0.891 0.505

nship 004 | AMIE 0318 0.5%0
MiniAMIE (full) %50 805
MiniAMEE (1) 026 0544
AnyBurl 0.990 0.499
AMIE 0.919 0.548

nations 0.318

MiniAMIE (ful) %738, 0407,

P 0.970 0.597
MiniAMIE (ol)  (5051)  (+0.049)
AnyBurl 0.641 0.572

AMIE 0.485 0.460
i 0.080 0.058
MiniAMIE (full) - Cozo5)  (-0.402)

wnl18rr < 0.001

P 0.488 0.463
MiniAMIE (0.l.) (+0.003) (+0.003)

Table 1: Link prediction performance of AnyBurl, AMIE and Mini-
AMIE. All systems were run with 0 = 5 and the Oj operator enabled.
Best values per dataset are shown in bold. MiniAMIE performance’s
difference w.r.t. AMIE is shown in parentheses.

5 Evaluation

Our evaluation is designed to answer our three research questions.
All experiments were run in a server equipped with a Intel Xeon
Gold 5220 CPU, 96GB DDR4 RAM and a 30TB HDD.

Evaluation on Resource Consumption. To answer RQ1, i.e., what
are the runtime and memory gains of our speed-up techniques,
we ran AMIE and MiniAMIE with 4 parameter configurations on
different public KGs. The configurations comprise AMIE’s default
settings (head coverage threshold of 0.01, [ = 3, Oy operator off),
the activation of the expensive operator O as well as different
thresholds on support (0) and rule length (I). Table 2 compares the
systems in terms of runtime and peek memory. We also include
AnyBURL, an anytime method (default time 1 min.) whose language
bias is comparable to the D + 6 + Oy configuration but with [ = 4.
For small datasets, e.g., wn18rr, MiniAMIE can still be faster but
AMIE remains a strong baseline. In contrast, runtime gains can
reach up to 5 orders of magnitude for large datasets, specially for
very exhaustive settings (e.g., I = 4). Likewise, peek memory can be
reduced up to 79% (oblc), which makes MiniAMIE apt for running
in personal computers on KGs with tens of millions of facts. This
is mainly because AMIE’s in-memory indexes OSP, OPS, and SOP

!https://openbiolink.github.io/, evaluated on 1000 triples due to the high no. of rules.
2Using the rules extracted after 44 hours of execution.
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Dataset Method Runtime Memory Precision Pearson
Default (D) D+I1=4 D+6={500,100,5} D+6+ Oy Default D+6+0r D+6 Supp.  Conf.
AMIE 7.4m >1d 10.4m >3d 25.50 GB 24.63 GB
caligraph MiniAMIE 4.4m 9.8m 3.1m 2.8d 14.71 GB 14.26 GB 0.12 0.53 0.38
AnyBurl 1 minute - 21.28 GB
AMIE 2.9m >1d 3.3m >1d 23.21GB 24.53 GB
wikidata2014 ~ MiniAMIE 2.5m 3.1m 1.5m 18.9h 14.64 GB 14.73 GB 0.11 0.19 0.60
AnyBurl 1 minute - 20.11 GB
AMIE 2.3m 2.0d 2.3m 5.7h 7.94 GB 15.82 GB
oblc mini-AMIE 1.1s 2.1s 1.0s 37.5m 2.16 GB 3.38 GB 0.38 0.54 0.22
AnyBurl 1 minute - 15.06 GB
AMIE 11.2s 1.0h 11.2s 33.3m 4.50 GB 4.66 GB
yago3-10 mini-AMIE 1.1s 1.6s 0.9s 3.3m 1.09 GB 2.22GB 0.18 0.99 0.61
AnyBurl 1 minute - 3.43 GB
AMIE 7.0s 19.7m 6.3s 2.1m 4.45 GB 4.88 GB
fb15k237 mini-AMIE 9.4s 2.7m 4.4s 3.9m 2.34GB 2.30 GB 0.25 0.76 0.07
AnyBurl 1 minute - 4.32 GB
AMIE 2.0s 8.7s 2.5s 8.0s 2.52 GB 4.28 GB
mini-AMIE 0.3s 0.3s 0.2s 17.0s 241.5 MB 1.62 GB 0.04 -0.02 0.997
AnyBurl 1 minute - 1.95 GB
AMIE 2.2s 53.8m 2.7s 2.1h 2.15GB 3.66 GB
mini-AMIE 1.4s 57.4s 1.4s 17.6s 652.2 MB 2.49 GB 0.84 0.32 0.40
AnyBurl 1 minute - 15.05 GB
AMIE 19.8s >3h 5.4m 9.9h 2.17 GB 15.04 GB
mini-AMIE <0.1s" <0.1s* 6.6s 15s 77.3 MB 418 GB 0.62 0.78 0.51
AnyBurl 1 minute - 4.06 GB

Table 2: Runtime and peak memory usage per configuration and method. No. of triples is color-coded in the dataset name into

4 groups, i.e., > 10M, (1M, 10M], (100k, 1M],

. The first two KGs use 6 = 500, the last three ones 6 = 5; (*) means no rules

were found and () means the result is not significant due to insufficient data.

can now be dropped thanks to our approximated metrics.

Approximation Evaluation (RQ2). The third right-most column of
Table 2 reports MiniAMIE’s precision at retrieving AMIE’s rules
for the configuration D + 0. Precision is overall low, which means
that MiniAMIE finds many false positive rules. That said, the corre-
lation between the approximated and the real support (calculated
for D + 0 + Oy and reported on the second right-most column) for
MiniAMIE’s rules is often significant. The results are similar for
approximated confidence among the rules also found by AMIE. This
means that while MiniAMIE’s approximated scores are not accurate
per se, they can still serve for ranking rule predictions by likelihood.

Link Prediction Evaluation. To answer RQ3 about the impact of light-
weight rule mining in link prediction, we tested the rules mined by
AMIE, MiniAMIE and AnyBurl on different link prediction bench-
mark datasets and report MRR and hits@10 performance in Table 1.
To guarantee comparable results, we ran all systems with a mini-
mum support threshold of 5 examples (AnyBurl’s default setting)
and enabled instantiated atoms in both AMIE and MiniAMIE. For
the latter we consider two variants: (i) the only language variant
(abbreviated o.1.) that mines only closed paths but still computes
exact scores, and (ii) the full MiniAMIE with approximate support
and confidence. We observe that mining only closed paths incurs
little performance penalty in prediction performance, and can even
be beneficial. This suggests that in some datasets closed non-path
rules might be noisier. MiniAMIE full incurs a higher performance
penalty, which varies greatly across datasets. Its approximated met-
rics provide even a slight performance boost for hits@10 for the

dataset nations. The edge density of the nations graph (0.318) makes
our independence assumption reasonable. High density, however,
does not guarantee this is always the case (e.g., kinship).

6 Discussion and Conclusion

We have presented MiniAMIE, a quick and dirty version of AMIE
based on fast approximations for rule quality scores — and avail-
able in AMIE’s latest version. While MiniAMIE is not meant to
replace SOTA systems, the proposed techniques allow for quick ex-
ploratory analysis on large KGs in small servers. Furthermore, our
approximation techniques could be integrated into other mining ar-
chitectures or pipelines to, for instance, prune unpromising regions
of the search space or as cardinality estimators for efficient query
planning. We expect these results to inform the designers of rule
mining systems about the trade-offs of approximative techniques.
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