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Abstract

Rule mining finds patterns in structured data such
as knowledge graphs. Rules can predict facts, help
correct errors, and yield explainable insights about
the data. However, existing rule mining implemen-
tations focus exclusively on mining rules — and not
on their application. The PyClause library offers a
rich toolkit for the application of the mined rules:
from explaining facts to predicting links, scoring
rules, and deducing query results. The library is
easy to use and can handle substantial data loads.

1 Introduction

Knowledge graphs (KGs) such as Yago [Suchanek et al.,
2007] or Wikidata [Vrandeci¢ and Krétzsch, 2014] repre-
sent knowledge about the world via structured facts of the
form predicate (subject, object) [Suchanek et
al., 2019]. For example, a general-purpose KG could contain
the fact 1ivesIn (Eleonor Roosevelt, NewYork).
Rule mining approaches learn symbolic rules of the form
H < B with body B and head H from a KG. In our ex-
ample, we could mine:

| citizen(X,Y) <« livesIn(X,A), locatedIn(A,Y)

where X, A, and Y are variables and the terms (-, -) are
called atoms. This rule says that a person X, who lives in
a city A located in a country Y is most likely a citizen of
that country. Such rules serve several purposes: they can be
used to explain facts (why is Roosevelt likely to be a citizen
of the United States? Because she lived in New York!); to
predict facts (if Roosevelt’s nationality is unknown, it can be
guessed); and to correct mistakes (if Roosevelt has another
nationality than American, this statement should be checked
by a human). Rules can also help understand the patterns
in the KG (compute every rule that predicts Roosevelt to be
a citizen of the United States). In domain-specific settings,
rules can be used for recommendation, e.g., to guide research
efforts. A domain-specific KG such as Hetionet [Himmel-
stein et al., 2017], for example, contains biomedical facts
such as treats (Ibuprofen, Headache). On such a
KG, we could mine that similar compounds should be con-
sidered as treatments for the same medical conditions:

| treats (X,Y) <= resembles (A,X), treats(A,Y)

Such a rule can be used, e.g., in the context of a drug repur-
posing application [Liu et al., 20211, in which new treatment
possibilities are searched for given compounds. Finally, rules
can also be used in combination with embedding-based pre-
diction methods to endow them with explainability [Boschin
et al., 2022; Betz et al., 2022a; Galarraga, 2023].

Rule mining thus has useful applications in explainable
data interpretation. And indeed, there exist several ap-
proaches that can mine rules, including AMIE [Galarraga
et al., 2013; Galérraga et al., 2015; Lajus et al., 2020],
AnyBURL [Meilicke et al., 2023], Rudik [Ortona et al.,
2018], and differentiable learning methods [Yang et al., 2017,
Sadeghian et al., 2019; Qu et al., 2021; Ji et al., 2021]. These
approaches can mine rules on large real-world KGs in min-
utes (the above rules were mined on YAGO by AMIE, and
by AnyBURL on Hetionet, respectively). While the mining
can be performed efficiently, the functionality to actually ap-
ply the rules is hardly accessible. It is usually not possible
to use the rules to predict facts, explain facts, or compute the
precision of these rules on another KG. Rather, the user has
to invest additional coding effort.

In this paper, we present PyClause, a library that makes
general rule application easily accessible in Python. Applica-
tions using the rules can be incorporated into existing Python
projects with a few lines of code. PyClause can flexibly
switch between different input and output modes, e.g., from
Numpy arrays containing integers to lists of strings. Com-
putations can be performed by user defined options and all
implementation details are documented in a default configu-
ration file. PyClause supports multithreading for all the im-
plemented features and its core mechanics are implemented
in C++ for maintaining runtime efficiency. PyClause, as well
as all data of our examples is publicly available at https:
//github.com/symbolic-kg/PyClause.

2 Rule handling with PyClause

The PyClause library is structured in two Python packages
clause and c_clause. Figure 1 shows the library compo-
nents when using different features. The c_clause package
is written in C++, and implements most of the library core
features such as data storing and rule grounding. It is accessi-
ble from within Python via a high-level API that is structured
into multiple handler classes providing access to different fea-
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Figure 1: Usage-centric library overview. The example code mines rules with AMIE, which are used to predict the employer of a person.

tures. The clause package is pure Python and provides dif-
ferent utilities such as option handling and rule learning.

PyClause supports horn rules without negation on binary
predicates given by the respective KG. In the following, we
briefly define some terminology that is used throughout the
descriptions of this section. Given a rule H < B, a sub-
stitution ¢ is a mapping from variables in the rules to con-
stants. Applying a substitution to the atoms of the rule pro-
duces grounded atoms, i.e., facts. If the body groundings
are facts from the KG, the head grounding is a prediction.
If this prediction is also in the KG, we call it a true predic-
tion. The support of a rule is the number of true predictions
made by the rule. If we normalize this number by all the
predictions of the rule, we obtain the standard confidence.
Depending on what we consider a valid prediction, we can
obtain different confidence metrics [Galarraga et al., 2013;
Tanon et al., 20171.

2.1 Features

PyClause provides convenience wrappers to two rule learners,
AMIE and AnyBURL. Both systems can be run from Python,
and can be fully configured by the PyClause option handling.
The AMIE system was especially adapted to conform to a
common interface. Figure 1 (center top) shows how a rule
mining system can be called easily from within PyClause. In
what follows, we assume that the rules have been mined (by
AMIE, AnyBURL, or any other system), and focus on the
applications of the rules.

A typical workflow can be seen in Figure 1 (center bottom):
we first load a KG and a rule set into memory by help of the
c_.clause.Loader. Itis given as a reference to a particu-
lar handler class, that additionally takes feature specific input
(e.g., facts) to perform its task. Then, PyClause supports the
following operations on the KG and set of rules.

PREDICT. Three different prediction modes are provided.
1) Given a KG and one or more input queries, i.e., facts with
a missing object or subject, find candidates for the missing
entity and provide a likelihood score for each candidate. 2)
Given a set of complete facts, calculate a likelihood score for

each fact, which will be zero if it is not predicted by any rule.
Otherwise the likelihood scores are computed by aggregating
the confidences of the predicting rules. Different aggregation
functions can be configured in the options, see, e.g., [Betz et
al., 2023]. 3) Given an additional target KG we aim to com-
plete, form a head and a tail query from every existing fact
and calculate candidates for all created queries. This results
in a complete ranking in the realm of knowledge graph com-
pletion [Rossi et al., 2021] (KGC). PyClause also provides
utilities to directly calculate fine-grained ranking-based eval-
uation metrics.

EXPLAIN. For the prediction modes described above, the
library can additionally compute and output all the rules that
produced the respective candidate or fact predictions. These
constitute the reasons why a prediction was made and they
could, e.g., be used as features for neuro-symbolic models.
Finally, for the given input facts and their predicting rules,
all the body groundings of each rule can be returned. For
example, an explanation for the prediction citizen (Tom
Hanks, US) can be given by the first rule of Section 1 to-
gether with its body groundings {1ivesIn (Tom Hanks,
LA), locatedIn (LA, US)}.

SCORE. Given a set of rules (whether mined or defined
by the user), PyClause can compute different metrics such as
the number of predictions, the support, the rule confidence or
precision, on any specified KG.

MATERIALIZE. Given a set of rules (whether mined or
defined by the user), PyClause can find all predictions of the
rule, and materialize them into a new KG. This is useful to
compute the deductive closure of the KG under the rules, and
can be used to add new facts.

For all of these functionalities, PyClause supports differ-
ent types of data representation. Inputs and outputs can be
read or written from and to files or they can be directly given
and accessed from code. Furthermore, they can be either rep-
resented as Numpy arrays containing indices or as lists of
strings. The full list of PyClause operators and their descrip-
tion as well as further details such as the supported rule types



(the language bias) are provided in the library documentation.

2.2 Efficiency

PyClause maintains the runtime efficiency of symbolic ap-
proaches, even though it is used from Python. In the fol-
lowing experiments, we focus on different application tasks,
which cover all computationally relevant aspects of the li-
brary. We use the FB15k-237 [Toutanova and Chen, 2015]
and the WN18RR [Dettmers et al., 2018] KG’s and their com-
mon training and test splits, which are frequently used in the
KGC community (e.g., [Broscheit et al., 20201). For FB15k-
237 (WN18RR), the training split on which rules are learned
and applied, contains 272k (86k) triples. The test splits con-
tain 20k (3K) triples. The rule sets are taken from [Meilicke
et al., 2021] and they contain more than 5 million (97k) rules
for FB15k-237 (WN18RR).

The experiments are performed on an Intel(R) Xeon(R) Sil-
ver CPU. When possible, we compare against AnyBURL as
it is recently shown to be runtime efficient compared to neural
models [Meilicke e al., 2023]. We measure the pure compu-
tation times and exclude rule loading, which only has to be
performed once in PyClause and is similar for both methods,
e.g., roughly 25 (0.5) seconds for FB15k-237 (WN18RR).

Table 1 shows results for different features. In the first two
rows, we use the default options for PyClause and AnyBURL
and create a ranking file for the FB15k-237 test split when
applying the rules on the training split (predict mode 3 from
Section 2.1). In the next two rows, we re-calculate the pre-
processing used in [Ott e al., 2023] on the training splits of
the respective KG’s. This means calculating a ranking file for
the training split itself, and storing all the rules that predicted
every computed candidate!. The results show the runtime
benefit when using PyClause. Finally, we show in the last
row the runtimes when assigning triple scores given by the
predicting rule with the highest confidence of the test splits
of the KGs.

Task System  FB15k-237 WNI8RR
Ranking PyClause 47.3s 6.3s
(6 threads) AnyBURL 155s 36s
Rule Retrieval PyClause 147s 50s
(16 threads) AnyBURL 3.4h 819s

Triple Scoring (6 thr)  PyClause 5.4s 0.5s

Table 1: Rule application runtimes for different tasks in seconds
(s) or hours (h). The rule set for FB15k-237 contains more than 5
million rules and 97k rules for WN18RR.

Rule application tasks on KGs do not involve full fledged rea-
soning. Systems like ProbLog [De Raedt et al., 2007] fo-
cus on inference using model theoretic entailment on general
probabilistic logic programs. This type of inference is not
feasible for larger KGs. To demonstrate this, we translated
the rules and the train and test splits from WN18RR into a
ProbLog program to perform the task of the first row. It is one

IThis feature is only available in an unofficial version of Any-
BURL provided in the supplementary materials of [Betz et al.,
2022b].

of the smallest KGs used for evaluation tasks. ProbLog did
not terminate after two hours. Restricting the rules from 97k
to 400 cyclical rules with one or two body atoms and reduc-
ing the amount of queries from 6000 to 20 (2 queries per fact),
ProbLog did still not terminate after two hours. ProbLog did
terminate in few minutes when using 32 rules, i.e, only cycli-
cal rules with one body atom, and 20 queries.

General purpose rule-based programming systems such as
CLIPS [Riley, 19911, on the other hand, can be considered
as efficient alternatives. PyClause, however, is more tailored
towards KGs and KGC and provides specific functionalities
such as confidence aggregation functions in this context.

3 Application: Drug Repurposing

We will briefly continue the example given in Section 1
regarding the drug repurposing problem; a longer version
is provided in the examples section on Github. The Het-
ionet KG contains more than 2 million facts and we use
a rule set learned with AnyBURL on the KG. We assume
that the KG and the rule set is loaded with a Loader
and that a QAHandler (qa) and PredictionHandler
(ph) are instantiated. We consider the given query
treats (Isoetarine, ?), i.e., we seek for ailments
that can be treated with the compound Isotarine.

queries = [("Isoetarine", "treats")]
ga.calculate_answers (queries, loader, "tail")
answers = ga.get_answers (as_string=True)
answers[0] [0] # return first candidate
["asthma’, 0.449] #output

The first candidate prediction is Asthma with a likelihood of
0.449. We can now analyze this prediction further:

fact = [("Isoetarine", "treats", "asthma")]
ph.calculate_scores (fact, loader)
targets, pred_rules, groundings \

= ph.get_explanations (as_string=True)

The variable pred_rules holds the predicting rules for the
fact and groundings the respective body groundings. One
of the predicting rules is the rule that we have already seen
in Section 1. We show the output when accessing the first
grounding of this rule (code suppressed for brevity):

["Salbutamol’,
["Salbutamol’,

"resembles’, ’'Isoetarine’]
"treats’, "asthma’]

We can thus see that one reason for the prediction Asthma is
that the resembling drug Salbutamol is already known to
treat Asthma.

4 Conclusion

PyClause is a library for efficiently handling association rules
in the context of knowledge graphs. It provides tools for us-
ing the rules as predictors and also as explanations for factual
predictions. The current implementation includes two state-
of-the-art rule miners but rules from any mining system can
be used. Future work can integrate rules and their predic-
tions generated by PyClause into machine learning pipelines,
including neural architectures and embedding-based models.
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