
Answering Provenance-Aware Queries on RDF Data
Cubes under Memory Budgets

Luis Galárraga1,2, Kim Ahlstrøm2, Katja Hose2, and Torben Bach Pedersen2

1INRIA; 2Department of Computer Science, Aalborg University
luis.galarraga@inria.fr, {kah|khose|tbp}@cs.aau.dk

Abstract. The steadily-growing popularity of semantic data on the Web and the
support for aggregation queries in SPARQL 1.1 have propelled the interest in
Online Analytical Processing (OLAP) and data cubes in RDF. Query processing
in such settings is challenging because SPARQL OLAP queries usually contain
many triple patterns with grouping and aggregation. Moreover, one important
factor of query answering on Web data is its provenance, i.e., metadata about its
origin. Some applications in data analytics and access control require to augment
the data with provenance metadata and run queries that impose constraints on this
provenance. This task is called provenance-aware query answering. In this paper,
we investigate the benefit of caching some parts of an RDF cube augmented with
provenance information when answering provenance-aware SPARQL queries.
We propose provenance-aware caching (PAC), a caching approach based on a
provenance-aware partitioning of RDF graphs, and a benefit model optimized for
RDF cubes and SPARQL queries with aggregation. Our results on real and syn-
thetic data show that PAC outperforms significantly the LRU strategy and the
Jena TDB native caching in terms of hit-rate and response time.

1 Introduction
In the last years we have seen a steady increase of the amount of Linked Data avail-
able on the Web. This data spans over a wide variety of topics ranging from common-
sense information to specialized domains such as governmental information, media,
life sciences, etc. The data is normally published in RDF [24] and queried using
SPARQL [25]. The extended capabilities of SPARQL 1.1 —notably the support for
aggregation queries— have motivated the publication of multidimensional data, i.e.,
data cubes, in RDF [8, 12, 17, 28] . The analysis of multidimensional data is a standard
task in data warehouses and is known as OLAP (Online Analytical Processing). The
publication of the QB vocabulary [9] has served as a bridge between the semantic web
and OLAP communities.

Imposing constraints on the provenance of query results, a task known as
provenance-aware query processing, is crucial in a setting with data coming from mul-
tiple independent sources. The provenance of a piece of data is a set of assertions about
its origin. Provenance metadata can be used, e.g., to restrict OLAP operations to data
meeting certain quality constraints [21], or to implement access control policies [3].
The importance of provenance data management motivated the creation of the PROV
ontology [20] (PROV-O), the W3C standard to represent provenance information for
RDF data. PROV-O provides the data model to describe a set of provenance entities,

i.e., RDF resources, which are assigned to the triples in an RDF dataset. There exist
multiple representations for provenance-augmented RDF data, such as named graphs
and reification. These representations are, though, not exempt from performance issues
for very complex queries [22] due to the additional complexity added by the provenance
metadata. In this paper we use the named graph representation [4].

A recent formulation for provenance-aware query answering divides the query in
two parts: a provenance query and an analytical query [1, 32]. The provenance query
imposes constraints on the provenance entities of the triples that should be considered to
answer the analytical query on the actual data. In a representation of provenance entities
using named graphs, this amounts to adding a set of FROM clauses to the analytical
query for each provenance entity reported by the provenance query. As shown in [1],
query response time is seriously affected in frameworks, such as Jena, as the number
of FROM clauses increases. This happens because the query engine has to fetch a large
number of intermediate results from disk in order to answer the analytical query.

In this paper we propose to alleviate the aforementioned phenomenon by caching
some fragments of the RDF graph in memory, so that the analytical queries benefit
from fast access to the data. Our caching strategy, called provenance-aware caching
(PAC), selects the most beneficial fragments that fit within a memory budget. Since we
are interested in RDF cubes, we assume our queries are OLAP queries, i.e., SPARQL
queries with aggregation, grouping and filtering. This assumption reduces the space of
possible queries we optimize for, without the need of an explicit query-load. We show
that for OLAP analytical queries, it suffices to cache a small percentage of the dataset
in order to achieve a significant speed-up in query response time. This is particularly
convenient for memory-constrained settings. In summary our contributions are:

– A fragmentation scheme tailored for provenance-augmented RDF graphs.
– The formulation of the budgeted provenance-enabled fragment selection problem:

The problem of selecting a set of fragments for caching so that as many OLAP
queries as possible benefit from fast access to cached data.

– A query rewriting algorithm to answer analytical queries from a set of named
graphs and cached fragments.

– A study of the impact of caching on the performance of Jena TDB for provenance-
aware SPARQL aggregation queries.

The remainder of this paper is structured as follows. Section 2 introduces the basic
concepts of RDF cubes, SPARQL aggregation queries and provenance in RDF. In Sec-
tion 3, we introduce the fragment selection problem with a memory budget for RDF
cubes with provenance information. This is followed by an experimental evaluation in
Section 4 and a discussion of related work in Section 5. Section 6 concludes the paper.

2 Preliminaries
2.1 RDF Cubes
In compliance with the official RDF specification [24], we define an RDF triple t (or
simply a triple), as t = 〈s, p, o〉 ∈ (U ∪B)×P × (U ∪B∪L), where s is the subject, p
is the predicate, and o is the object. In this definition, U , B and L are countably infinite
sets of IRIs, blank nodes and literals. In addition, we define the set of predicates P ⊆ U
and the set of classes C ⊆ U . An RDF dataset K is a set of RDF triples. Since RDF

Fig. 1: Observation with 3 dimensions: Year, Station, and Sensor. Measure predicates
PM are in solid line style, whereas attribute predicates PA use dotted lines. The dashed
edges correspond to the dimension properties PD.

defines a graph-like data model, we also refer to RDF datasets as RDF graphs. An RDF
cube Kc = {O,D,PM,PD,PA, ∆} is an RDF graph defined in terms of:

– A set of observations O ⊆ U .
– A set of measure predicates PM ⊆ P , defined between observations and literal

numerical values. These predicates are the target of aggregation in OLAP queries.
– A set of dimensions D. Observations are defined by their coordinates in D. Each

dimension consists of a hierarchy of classes that describe an observation at different
degrees of specificity. Each class defines a level in the hierarchy.

– A set of dimension predicates PD ⊆ P . These predicates define the coordinates of
an observation in the dimensions D.

– A set of level attributes PA ⊆ P . Level attributes are predicates defined on the
class levels of the dimensions. They are often used for grouping and filtering.

– A function∆ : D → H that assigns each dimension inD a class hierarchy from the
set of hierarchies H. A class hierarchy H = (L,≺L, γ, σ) ∈ H consists of a set of
class levels L ⊆ C and a partial order ≺L on L with a single greatest element. The
function γ : L → 2PD assigns each class level in L a set of dimension predicates,
whereas the function σ : L→ 2PA assigns each class level a set of level attributes.

Example 1. Consider an RDF cube representing a database of air pollution measure-
ments. Each measurement corresponds to an observation in the cube model. A measure-
ment of 12.3 µg/m3 of the pollutant PM10 corresponds to the triple 〈Obs, air:pm10,
12.3〉 depicted in Figure 1. It follows that Obs ∈ O and air:pm10 ∈ PM. The
triple 〈Obs, air:station, St1〉 defines the coordinates of Obs in the Station dimension.
There are three dimensions in our example, i.e., D = {Year ,Station,Sensor}. The
predicates air:year, air:station, air:sensor ∈ PD are dimension predicates. The func-
tion ∆ associates each dimension with a class hierarchy. For example, the dimention
Station is mapped to a hierarchy H = (L,≺L, γ, σ) defined by the classes L =
{Station,City ,Country} and the order Station ≺L City ≺L Country . In addition,
it holds that γ(Country) = {air:locatedIn}. The country’s code can be modeled as a
level attribute air:ccode ∈ PA of the Country class. Thus, σ(Country) = {air:ccode}.

2.2 SPARQL queries
Due to space constraints, we do not provide a rigorous definition of SPARQL queries;
instead we resort to the formulation used in [15] to define SPARQL aggregation queries.
These are the most common types of OLAP queries. We define a triple pattern as a
triple t̂ = 〈s, p, o〉 ∈ (U ∪ B ∪ V) × (P ∪ V) × (U ∪ B ∪ L ∪ V). The set V is
a set of variables with (U ∪ B ∪ L) ∩ V = ∅. A basic graph pattern Gp is a set

of triple patterns. A SPARQL select query Q is an expression of the form “SELECT
V F WHERE Ĝp GROUP BY V ′ HAVING c” with V ∪ F 6= ∅. In this definition
V ⊆ V is the set of projection variables and F is a set of aggregation expressions of the
form f(g(V̂)) where f ∈ {COUNT, SUM,AVG,MIN,MAX} and g(V̂) is a numerical
expression on the set of aggregated variables V̂ ⊆ V . Ĝp is an extended basic graph
pattern, potentially containing OPTIONAL and FILTER clauses. The set of grouping
variables is a superset of the projection variables (V ′ ⊇ V) whereas c is a Boolean
expression on V ∪ F . The GROUP BY and HAVING clauses are optional.

Example 2. The following SPARQL query computes the maximal concentration of
PM10 per city in Denmark in 2012 according to the schema in Figure 1.

SELECT ?city (MAX(?ms) as ?max) WHERE {
?obs air:pm10 ?ms. ?obs air:year y:2012. ?obs air:station ?st.

?st air:inCity ?city. ?city air:locatedIn Denmark.

} GROUP BY ?city

2.3 Provenance
There exist multiple provenance models for RDF in the literature [7]; in this paper, we
focus on workflow provenance [26]: the history of a unit of information from its sources
to its current state. This provenance is modeled using RDF by assigning each triple an
RDF resource, which we call its provenance entity. The set of statements describing the
provenance entities of an RDF graph is a provenance graph. The PROV Ontology [20]
is the W3C specification to model provenance graphs. In this model a provenance en-
tity can represent a data resource such as a file, a web page or the intermediate result
of a data transformation process. Any operation on data is modeled as an activity in
PROV-O. Those activities can be directly or indirectly carried out by agents: people,
organizations or even computer programs.

If I is a set of provenance entities and f : K → I is a provenance function on
the triples of an RDF graph K, a provenance-augmented RDF graph KI is a set of
pairs 〈t, f(t)〉, which can also be seen as a set of quadruples 〈s, p, o, i〉, where i ∈ I.
We can also model a provenance-augmented RDF graph as a set of RDF sub-graphs,
each containing the triples associated to the same provenance entity. In this view KI =
{Ki1 , . . . ,Kin} (i1, . . . , in ∈ I) and each RDF sub-graph is a named graph with label
i. We define a provenance-augmented cube as an RDF cube whose triples have been
augmented with provenance entities.

2.4 Provenance-Aware Query Answering
Given a provenance-augmented RDF graph KI = {Ki1 , . . . ,Kin} and a provenance
graph GI describing the set of provenance entities i1, . . . , in ∈ I, a provenance-aware
query is a pair of SPARQL queries 〈qp, qa〉 [1, 32]. qp is known as the provenance
query and is defined on GI . The provenance query is designed so that it returns a set
of provenance entities I ⊆ I. Those provenance entities are used to restrict the scope
of the analytical query qa on the RDF graph KI to those subgraphs with labels in I .
The problem of answering provenance-aware queries on RDF data has been studied in
the last years [1, 6, 31, 32]. If provenance information is modeled using named graphs

(where the labels are provenance entities), the naive strategy is to augment the analyti-
cal query with a FROM clause for every provenance entity reported by the provenance
query. In [1] it is shown that this strategy performs poorly in frameworks such as Jena
for non-selective provenance queries. A strategy called full materialization [32] pro-
poses to first fetch all the triples from the named graphs to main memory, and then
run the analytical query on the union of those graphs. While this strategy generally
outperforms the naive approach, it is not free from performance issues on memory-
constrained systems. Nonetheless, we observe that both strategies require the retrieval
of a large number of triples from disk. Therefore, we study the impact of keeping some
parts or fragments of the dataset in main memory so that queries can benefit from fast
access to the data.

3 The Budgeted Provenance-Enabled Fragment Selection Problem
In this section, we define the budgeted provenance-enabled fragment selection prob-
lem. This is the problem of selecting a set of provenance-enabled RDF data fragments
for caching so that we reduce the response time of the analytical query when answer-
ing a provenance-enabled query. This is achieved by maximizing the amount of data
that is retrieved from the cache. In the following, we describe the three components of
our approach, namely the fragmentation strategy, the cost-benefit model, and the query
rewriting algorithm. We highlight that our method is query-load agnostic, thus it aims
at optimizing for as many queries as possible in the space of analytical queries.

3.1 Fragmentation strategy
A fragmentation strategy defines how to split a dataset into smaller parts, i.e., fragments.
Once the dataset is fragmented, we can decide which parts to put in the cache. We start
by defining a fragment for provenance-augmented RDF graphs.

Definition 1. A fragment signature sφ is a quadruple 〈s, p, o, i〉 such that each compo-
nent can be a constant or a variable. We say a quadruple q in a provenance-augmented
RDF graph KI matches a fragment signature if there exists an instantiation ρ for the
variables in the signature such that ρ(sφ) = q. The set φ of quadruples that match sφ
in a provenance-augmented RDF graph KI is a fragment.

Definition 2. A provenance-aware fragment tree Φ consists of a set of fragments and a
partial orderwf on those fragments. A fragment φ subsumes a fragment φ′, denoted by
φ wf φ′, iff sφ′ ⇒ sφ. If φ wf φ′ then φ ⊇ φ′ .

Figure 2 shows a provenance-aware fragment tree describing some fragments from
the cube introduced in Example 1 with two provenance entities pr:e1 and pr:e2. The
root fragment contains the trivial signature, i.e., the signature that matches all quadru-
ples in the dataset. In the second level, we have signatures with restrictions on the prove-
nance entities of the quadruples. The fragments in the third level have restrictions on
both the predicate and the provenance entity. Fragments always subsume their children.

Algorithm 1 describes the method to construct a provenance-aware fragment tree
given a provenance-augmented RDF graph. The algorithm first initializes the tree with
the trivial signature (line 1). Then for each quadruple in the dataset, the method con-
structs signatures with (a) bound provenance entity, (b) bound provenance entity and

〈∗, ∗, ∗, ∗〉

〈∗, ∗, ∗, pr:e1〉

〈∗, air:pm10, ∗, pr:e1〉 〈∗, air:so2, ∗, pr:e1〉

〈∗, ∗, ∗, pr:e2〉

〈∗, air:pm10, ∗, pr:e2〉 〈∗, air:o3, ∗, pr:e2〉

6000

1000 5000

500 500 2500 2500

Fig. 2: A provenance-aware fragment tree. The size of each fragment is noted below.

predicate (line 3), and (c) bound provenance entity, predicate and object for the rdf:type
predicate (lines 4-5). The latter step accounts for the typically large size of the rdf:type
predicate. If the tree does not contain a signature, the signature is initialized (by setting
its size to 1 in line 8) and added to the tree (line 9). Otherwise, the size of the signature
is incremented to account for the current quadruple (line 11).

Algorithm 1: BuildPATree
Input: a provenance-augmented RDF graph: KI
Output: a provenance-aware fragment tree: Φ

1 Φ := {〈∗, ∗, ∗, ∗〉}
2 foreach q := 〈s, p, o, i〉 ∈ KI do
3 Φ′ = {〈∗, ∗, ∗, i〉, 〈∗, p, ∗, i〉}
4 if p = “rdf:type” then
5 Φ′ = Φ′ ∪ {〈∗, p, o, i〉}
6 foreach s′φ ∈ Φ′ do
7 if s′φ 6∈ Φ then
8 s′φ.size := 1
9 Φ = Φ ∪ s′φ

10 else
11 s′φ.size := s′φ.size + 1

12 return Φ

When clear from the context, we drop the distinction between a fragment and its
signature and refer to both as φ. Finally, we highlight that Algorithm 1 produces frag-
mentation schemes with redundancy. Whether we allow redundancy or not in the set of
selected fragments depends on the benefit model. We elaborate on this in the following.

3.2 Cost-Benefit Model
The cost-benefit model quantifies the price we have to pay for caching a fragment,
as well as the amount of saved response time induced by using the cached fragment to
answer queries. In line with approaches for view materialization [15] we use the number
of quadruples matched by the fragment’s signature as its cost, i.e., cost(φ) = |φ|. We
say a fragment φ is relevant to a provenance-aware query q = 〈qp, qa〉 if at least one
of the quadruples in φ can be used to answer q—and none of them could lead to a
wrong answer. For example, consider a provenance query qp with result pr:e1 and the
analytical query qa from Example 2. In this case the analytical query is restricted by the
provenance query to the quadruples with provenance pr:e1. We say that the fragments
φ and φ′ with signatures sφ =〈*, air:pm10, *, pr:e1〉 and sφ′ =〈*, *, *, pr:e1〉 are

relevant to q. In contrast, the fragment φ′′ with signature sφ′′ = 〈*, p:unitPrice, *,
pg:e2〉 is not relevant, because qp does not consider the provenance entity pg:e2.

Under the assumption that the cost of accessing a quadruple from main memory is
insignificant compared to the cost of accessing it from disk, we define the benefit of a
cached fragment φ as ben(φ) =

∑
qa∈Q |φqa ∩ φ| where Q is the space of all possible

queries, and φqa is the set of all quadruples required by the query engine to answer qa.
In other words, the benefit of a cached fragment is the absolute number of times one
of its quadruples can be fetched to answer a query in the query space. It follows that
the total benefit of a selection of cached fragments Φ′ ⊆ Φ from a tree Φ, is given by
ben(Φ′) =

∑
qa∈Q |φqa ∩ u(Φ

′)|, with u(Φ′) =
⋃
φ∈Φ′ φ. Our goal is to find a Φ′ with

maximal ben(Φ′).
We highlight that in real-world query engines, the benefit of a fragment w.r.t a query

qa may not necessarily depend on the absolute number of cached relevant quadruples
used to answer qa but on the ratio w.r.t the query’s relevant set, i.e., |φqa∩u(Φ

′)|
|φqa |

. For
example, it may be more beneficial to retrieve 1000 cached quadruples for a query with
|φqa | = 1000 than for a query with |φqa | = 10000. In the absence of an explicit query
load, however, we can only expect to estimate the term |φqa∩u(Φ′)| since the queries qa
and their corresponding relevant sets φqa are unknown. In the following we show that
the fixed structure of RDF cubes as well as our focus on OLAP queries, both provide
hints to guarantee that ben(Φ′) is at least large.

Observation 1 Distance to observations. The closer to the observations a predicate
lies in the schema, the larger the relevance set of its matching fragments is.

For example, all OLAP queries on data cubes involve aggregation of at least one mea-
sure. This means that |φqa ∩ φ| > 0 for fragments φ that match measure quadruples.
Furthermore and assuming connected SPARQL queries, filtering or grouping on at-
tributes and dimensions in higher levels always requires to pass by the lower levels,
hence it is more beneficial to cache quadruples with predicates in the lower levels.

Observation 2 Diversity. Fragments with larger diversity of predicates have larger rel-
evance sets, i.e., they “touch” more queries.

Observation 3 Duplicates. Given a selection of fragments Φ, duplicate quadruples ly-
ing in different fragments do not provide additional benefit, because they occupy extra
memory without extending the set of relevant queries of Φ.

Based on these observations and the fragmentation defined by the provenance-aware
fragment tree, we devise a selection strategy given a memory budget.

3.3 Fragment selection

Given a provenance-augmented RDF cube Kc = {O,D,PM,PD,PA, ∆}, a maxi-
mum budget W in number of quadruples, and a provenance-aware fragment tree Φ, we
formulate the budgeted provenance-enabled fragment selection problem as an integer
linear program (ILP):

maximize
∑
φ∈Φ

do(φ)
−1 × dv(φ)× xφ

s.t.
∑
φ∈Φ

|φ| × xφ ≤W (budget)

∀p : φroot → · · · → φk :
∑
φ∈p

xφ ≤ 1 (no replication)

∀φ ∈ Φ : xφ ∈ {0, 1} (integrality constraints)

(1)

Each fragment φ in the lattice is assigned a Boolean variable xφ. If xφ = 1 the
fragment is chosen for caching. Hence, the solution to the ILP produces a set of frag-
ments Φcached ⊂ Φ that will be stored in main memory. Observations 1 and 2 are
implemented in the objective function. This function decreases with the distance of the
fragment’s predicates to the observations (do) and increases with the fragment’s diver-
sity (dv). We define the distance of a predicate to the observations as the number of
hops from an observation to the predicate in the schema. In Figure 1, for example, the
predicates air:pm10 and air:unit have distances 1 and 2 respectively. If a fragment φ
contains quadruples with different predicates, d(φ) is the smallest distance among all
predicates in φ. The diversity, on the other hand, is the number of different predicates
in quadruples in φ. The cost model is encoded in the budget constraint. Since duplicate
quadruples do not contribute with additional benefit (Observation 3), the no replication
constraint guarantees that the resulting set Φcached has no redundancy. Because of this
constraint and the partial order encoded in the tree, the solver can pick at most one
fragment in a given path from the root to a leaf.

3.4 Query rewriting
In this section, we describe how to use a selection of cached fragments Φcached to
answer provenance-aware queries q = 〈qp, qa〉. Recall from Section 2.4 that in a set-
ting based on named graphs, a provenance-aware query can be answered by adding a
FROM clause to the analytical query qa for each provenance identifier i ∈ I reported
by qp. Each provenance identifier corresponds to a named graph that resides in disk.
In our setting we count additionally on a set of cached fragments Φcached that can be
accessed from memory. We treat each fragment φ ∈ Φcached as a memory named graph
with label id(φ), where id(φ) returns the concatenation of the constant components of
the φ’s signature sφ. Exploiting those memory named graphs to answer the analytical
query is the goal of Algorithm 2. The algorithm takes as input an analytical query qa, a
provenance-aware tree Φtree , the result of the provenance query I and the set of cached
fragments Φcached reported by our selection strategy in Section 3.3. The algorithm re-
turns the graph labels that will be added as FROM clauses to the analytical query.

Line 1 initializes some intermediate variables. Lines 2-5 compute the most specific
fragments in the lattice that are relevant to the analytical query, i.e., fragments whose
signatures combine the provenance entities in I with the triple patterns of the analytical
query. Then for each relevant fragment φ, the algorithm verifies whether φ is in the
cache (line 9). If so, the fragment is added as a candidate (line 8). Otherwise, the algo-
rithm verifies whether one of φ’s ancestors (line 9) has been cached. There can be at
most of one of such ancestors due to the redundancy constraint discussed in Section 3.3.

Algorithm 2: rewriteAnalyticalQuery
Input: Analytical query qa, provenance-aware tree Φtree , the provenance query result I ,

the set of cached fragments Φcached
Output: A set of graph labels

1 candidates := relevant := disk := ∅
2 foreach t = 〈s, p, o〉 ∈ qa do
3 foreach i ∈ I do
4 s := {〈∗, p, o, i〉, 〈∗, p, ∗, i〉} ∩ Φtree

5 relevant := relevant ∪ {most-specific-fragment-in(s)}

6 foreach φ ∈ relevant do
7 if φ ∈ Φcached then
8 candidates := candidates ∪ {φ}
9 else if ∃ φ′ ∈ Φcached : sφ′ wf sφ then

10 candidates := candidates − {φ̂ : sφ′ wf sφ̂} ∪ {φ
′}

11 else
12 disk := disk ∪ {i : sφ = 〈∗, p, ∗, i〉}
13 candidates := candidates − {φ : sφ ≈ 〈−,−,−, i〉}

14 return {id(φ) : φ ∈ candidates ∪ disk)}

If an ancestor φ′ is found in the cache, the algorithm adds it to the set of candidates (line
10). Since this addition turns every (possibly) selected descendant of φ′ redundant, the
algorithm removes them from the list of candidates (line 10). If neither φ nor any of
its ancestors is in the cache, the algorithm takes as candidate the named graph labeled
with the provenance identifier i in sφ (line 12). This step turns any fragment with i in
its signature superflous, and thus unnecessary (line 13). Once the final list of candidates
have been computed, Alg. 2 generates the graph labels that will be used to rewrite the
analytical query (line 14).

4 Experiments
4.1 Experimental setup
Data. We evaluated PAC on several datasets generated with the Star Schema Bench-
mark (SSB [23]) and on the QBOAirbase dataset [12]. The SSB benchmark provides a
data generator for a database of line orders processed by a wholesaler. The number of
line orders is an argument for the data generator. We converted the SSB dataset into an
RDF cube, where each line order corresponds to an observation defined by four dimen-
sions: supplier, part, customer, and date. We generated four datasets with four different
numbers of line orders: 80k, 160k, 320k, and 640k. This resulted in 2.3m, 4.4m, 7.8m,
and 14.4m triples respectively. All SSB datasets contain 68 distinct predicates. The
QBOAirbase dataset, on the other hand, models air pollution measurements from 36
European countries as an RDF cube augmented with workflow provenance. A measure-
ment corresponds to an observation with coordinates in the time, station (location), and
sensor dimensions. We tested our approach on the subset of measurements of Denmark
(qboairbase-dk) and Great Britain (qboairbase-gb). These datasets account for 542k and
4.3m triples respectively, both with 81 distinct predicates.

Provenance Data and Queries. Since the SSB benchmark does not provide prove-
nance for the data, we augmented each RDF cube with 1000 distinct provenance en-
tities and simulated a set of provenance queries. The provenance entities are assigned
to observations in the cube according to two settings: balanced and unbalanced. In the
balanced setting, each provenance entity is assigned the same number of observations
in the cube, whereas in the unbalanced setting the ith provenance entity is assigned
2i triples. We denote the resulting SSB datasets with the prefixes b- and u- followed
by the number of line orders, e.g., b-ssb-80k contains 80k line orders with a balanced
provenance assignment. We simulated our provenance queries by materializing sets of
provenance entities covering from 10% to 90% of the provenance entities in the cube
(at intervals of 10%). The datasets qboairbase-dk and qboairbase-gb contain 25.3k
and 191.8k different provenance identifiers. For QBOAirbase we constructed a set of 5
provenance queries. These queries impose constraints (a) on whether the data has been
quality checked or not (2 queries), (b) on whether we know the data provider or not (2
queries), and (c) on the observation’s generation time.

Analytical Queries. The SSB benchmark provides a set of 13 standard OLAP
queries [23]. For QBOAirbase [12], we used 8 of the analytical queries available at
the project’s website1. These are the queries where Jena does not time out. For all
datasets, we construct provenance-aware queries by combining each analytical query
with each of our provenance queries. Each provenance-aware query is executed three
non-consecutive times in random order. We averaged the runtimes.

System Setup and Opponent. We used the Jena TDB physical database for the in-
disk named graphs, and the Jena TDB in-memory store for the cached fragments2. All
experiments were run in a virtual server with an AMD Opteron 6376 with 8 cores, 128
GB of RAM and 1 TB of disk space running in RAID-5. We tested our queries under
two general system settings: (1) after purging the operating system cache and disabling
the Jena TDB cache —which we call cold—, and (2) with the default TDB cache (∼
50MB) and a populated OS’s cache after having run all the queries at least once. We call
this setting warm. We compare our approach with the caching provided by Jena TDB
and with the LRU caching strategy. The memory budgets are provided as percentages.
For Jena TDB a budget of 20% means the engine counts on memory of size 20% the
physical database. In contrast, for PAC and LRU the budgets indicate the percentage of
triples in the dataset that will be cached. LRU populates the available cache space with
the fragments used by the last executed query in a driven-by-size greedy fashion. Jena’s
standard execution plans timed out with most of the queries, thus we implemented an
execution strategy on top of Jena [1,32], on which queries are executed on the merge of
all relevant in-disk named graphs and cached fragments.

4.2 Evaluation
Impact of graph filtering. We disabled caching and compare PAC’s graph filtering and
query rewriting with the approach proposed in [1], and a naive query rewriting on the
analytical queries. The naive approach rewrites the analytical query by adding a FROM
clause for each of the results of the provenance query. In contrast, the approach in [1]

1 http://qweb.cs.aau.dk/qboairbase/
2 We used Jena v.3.2 available at https://jena.apache.org/

PAC Context index Naive

Dataset Runtime Build time
Triples

reduction
Runtime Build time

Triples
reduction

Runtime

b-ssb-80k 24.52s 17.38s 24.11% 35.97s 24.45s 24.10% 33.36s

u-ssb-80k 25.82s 17.65s 22.58% 37.48s 27.57s 22.56% 34.79s

qboairbase-gb 20.04s 42.72s 12.00% 103.41s 134.10s -37.51% 24.85s

qboairbase-dk 1.98s 5.56s 13.72% 6.54s 19.94s -35.31% 2.61s

Table 1: Performance of different graph filtering strategies (warm setting).

defines a context index that maps provenance entities to predicate paths, allowing for
pruning of the graphs that do not co-occur with predicate paths in the query. In the same
spirit, Alg. 2 filters irrelevant graphs by means of the provenance-aware fragment tree,
which encodes the co-occurrences of predicates, object values, and provenance identi-
fiers. Table 1 shows the average runtime and average index built time of the different
strategies for four of our datasets. We observe that PAC’s filtering outperforms the naive
approach in query runtime, because it achieves reductions from 12% to 24% in the total
number of materialized triples. While the context index and PAC achieve comparable
reductions in the SSB datasets, [1] performs worse for two reasons: (a) it merges all
relevant graphs in disk, and (b) it does not handle unions natively. The latter limitation
implies that subqueries must be executed independently and their results merged. It also
explains why this method sometimes materializes more triples than the naive approach,
leading to negative reduction rates. Finally, we highlight that the context index’s build
time is up to 3x slower than PAC’s provenance-aware fragment tree because the context
index runs an expensive select query for each predicate path in the index.

Caching vs. In-memory DB. Table 2 compares the average runtime of PAC, the LRU,
and the Jena TDB caching strategies –the two latter with and without PAC’s filtering–
at budget 20% against full PAC (budget 100%) and the Jena TDB in-memory database
in a warm setting. PAC at budget 20% outperforms in total time all caching strategies
and the Jena in-memory database. The bottom line is that with PAC’s strategic caching,
it is not necessary to store everything in main memory for speed-up. In addition, full
PAC is 2x faster than the in-memory database thanks to PAC’s graph filtering (Alg. 2).

Dataset Full-PAC Jena-mem PAC
LRU+

PAC+F

TDB+

PAC+F
LRU TDB

b-ssb-80k 13.03s 34.05s 23.43s 20.98s 23.78s 35.30s 33.21s

u-ssb-80k 13.74s 35.80s 26.58s 38.15s 26.34s 38.15s 35.84s

airbase-gb 17.86s 25.04s 13.80s 20.01s 17.45s 22.98s 25.56s

airbase-dk 2.06s 2.75s 1.65s 2.88s 0.02s 3.63s 2.56s

Total 42.69s 97.64s 65.46s 82.02s 67.59s 100.06s 117.17s

Table 2: Runtime of a full in-memory database vs. the caching strategies at budget=20%

Impact of the memory budget. Figures 3 and 4 show the impact of the memory budget
on the average cache hit-rate and the average response time of PAC in a cold setting on

four datasets from all our families of datasets. We define the hit-rate as the ratio of
graph labels returned by Alg. 2 that correspond to cached fragments. We observe a
monotonically increasing behavior in the hit-rate for all datasets. On the u-ssb-80k and
qboairbase datasets, the hit-rate already approaches 80% at budget 10%, contrary to
the h-ssb-80k dataset where the increase is more gradual. This phenomenon is mainly
caused by the fine granularity of the fragments both in u-ssb-80k and qboairbase. Fine-
grained fragments give the selector more flexibility at utilizing the available budget in
contrast to very large fragments as the ones found in h-ssb-80k. If a very large fragment
does not fit into the remaining cache space, it will not be added, even though it may be
relevant to many queries in the query space. The trends in the hit-rate are supported by
the runtime behavior in Figure 4.

0 50 100

0

0.5

1

Budget(%)

Ca
ch

e
hi

t-r
at

e

airbase-dk
h-ssb-80k
u-ssb-80k
airbase-gb

Fig. 3: Budget vs. hit-rate for PAC

0 50 100

0

50

100

Budget(%)

Ru
nt

im
e

[s
]

airbase-dk
h-ssb-80k
u-ssb-80k
airbase-gb

Fig. 4: Budget vs. runtime for PAC

PAC vs. LRU and TDB. We compare PAC, the Jena TDB native caching, and the LRU
caching strategy for qboairbase-gb on a warm setting in Figure 5. The trend is indepen-
dent of the system setting and is similar for qboairbase-dk. We first observe that PAC
outperforms Jena TDB at all budgets. Only when PAC’s filtering is enabled (TDB+PAC-
F), TDB performs comparably to PAC. On the contrary, LRU seems inadequate for this
dataset, even when PAC’s filtering is enabled (LRU+PAC-F). Due to the high diversity
of cached fragment signatures in the qboairbase datasets (approx. 192k), it is unlikely
for two consecutive queries to require the same fragments. This hurts the performance
of LRU, which delivers a hit-rate of 0 for less than 40% budget. LRU+PAC-F does
slightly better, but its maximal hit-rate is no higher than 0.6. The situation is different
for the u-ssb-80k dataset as shown in Figure 6. While PAC still delivers the best per-
formance, TDB is outperformed by LRU. The trends are corroborated by the hit-rate,
where PAC is between 0.26 and 0.57 ratio points better than LRU, and between 0.24
and 0.69 points better than LRU+PAC-F. Our findings in the h-ssb-80k dataset are alike:
PAC is between 0.15 and 0.47 ratio points better than LRU as displayed in Figure 7 (be-
tween 0.08 and 0.28 points w.r.t. LRU+PAC-F). All in all, the synergy between graph
filtering and a high hit-rate makes PAC faster than standard caching strategies.

Caching on bigger datasets. We also investigate the behavior of the different caching
strategies as the number of triples increases in the u-ssb family of datasets on a warm

0 50 100

20

30

40

50

Budget(%)

Ru
nt

im
e

[s
]

LRU

LRU+PAC-F

TDB

TDB+PAC-F

PAC

Fig. 5: Runtime on qboairbase-gb

0 50 100

20

30

40

Budget(%)

Ru
nt

im
e

[s
]

LRU TDB

LRU+PAC-F TDB+PAC-F

PAC

Fig. 6: Runtime on u-ssb-80k

0 50 100

0

0.5

1

Budget

Ca
ch

e
hi

t-r
at

e

LRU
LRU+PAC-F

PAC

Fig. 7: Hit-rate on h-ssb-80k

0.5 1 1.5

·107

100

200

Triples

Ru
nt

im
e

[s
]

LRU-20

TDB-20

LRU+PAC-F-20

TDB+PAC-F-20

PAC-20

Fig. 8: Runtime on u-ssb

system setting. We set a budget of 20% and show the results in Figure 8. PAC consis-
tently achieves better runtime than its competitors. In general, all trends observed in the
h-ssb-80k and u-ssb-80k datasets remain constant as the number of triples increases.

Impact of caching on queries. We also study the impact of the different caching strate-
gies on the response time of the individual analytical queries. For this purpose we com-
pute the area under the curve of response time vs. budget for each analytical query under
the different strategies on the h-ssb-80k, u-ssb-80k, qboairbase-gb, and qboairbase-dk
datasets. The runtimes were averaged across all provenance queries. Table 3 shows the
number of queries where each strategy wins, that is, the strategy achieves the smallest
area under the curve until budgets 20%, 50%, and 100%. We notice that TDB becomes
insensitive to the budget argument after a value of 20%. By looking at the winning
strategies in each query, we observe that PAC has an almost stable behavior: the set of
benefited queries grows monotonically as the budget increases. Despite of being query-
load oblivious, PAC with budget 20% wins in 50% of the analytical queries in the SSB
datasets, and in 100% of the analytical queries in the QBOAirbase datasets.

5 State of the Art
This paper studies the impact of caching fragments of an RDF dataset for query pro-
cessing on provenance-augmented RDF cubes. Therefore, we present the state of the art

budget 20% budget 50% budget 100%

Dataset PAC
TDB+

PAC+F

LRU+

PAC+F
TDB LRU PAC

TDB+

PAC+F

LRU+

PAC+F
TDB LRU PAC

TDB+

PAC+F

LRU+

PAC+F
TDB LRU

b-ssb-80k 4 5 4 0 0 6 1 6 0 0 7 0 6 0 0

u-ssb-80k 4 5 1 1 2 8 2 1 1 1 7 2 3 1 0

qboairbase-gb 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0

qboairbase-dk 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0

Table 3: Number of queries where each strategy wins (warm system setting)

in terms of three axes: caching in SPARQL and OLAP, query answering on SPARQL
aggregation queries, and provenance management.
Caching in SPARQL and OLAP. Caching data to speed up query answering is a stan-
dard technique in databases and has been also applied in the context of RDF/SPARQL
and OLAP. Caching can be implemented at different levels. For example, the Jena TDB
engine relies on the file caching provided by the Java Virtual Machine to speed up
subsequent access to recently-used parts of the RDF store. When implemented at the
application level, e.g., in a client-server setting, caching is often concerned with the
reutilization of query results [18, 19, 30]. In contrast, we aim at caching fragments of
the RDF dataset that are used by multiple queries and unlike [18], we do not count
on an explicit query load. Caching has also been implemented for data fragments and
intermediate query results. In the framework of Linked Data Fragments (LDF) [29],
the server can return cached data fragments, leaving the query processing to the client.
While PAC’s notion of fragments is similar to that of LDF, [29] does not consider prove-
nance and focuses more on reducing the server’s load for the sake of availability rather
than on minimizing response time. Caching has also been applied in the context of
OLAP [10, 16]. The system PeerOLAP [16], for example, relies on a P2P network to
answer OLAP queries. PeerOLAP reuses the results of queries executed by neighbour
peers as data sources. As PeerOLAP, most systems focus on caching recently queried
results [2, 11]. In [27] a hybrid query engine is proposed; it combines live results with
cached data as a trade-off between precision and speed. In our approach, we use heuris-
tics to pre-cache strategically important parts of the data.
SPARQL Aggregation Queries. The interest on optimizing SPARQL queries with
aggregation [5, 15] started with the publication of SPARQL 1.1 [25]. MARVEL [15]
proposes to answer SPARQL aggregation queries on RDF cubes by rewriting the query
in terms of a set of views. These views are structured according to a partial order, and
selected for query answering based on a cost model as in PAC. Unlike PAC, MAR-
VEL is not a caching approach, it cannot handle provenance, and it is based on data
aggregates materialized as views rather than on actual RDF fragments. Conversely, the
approach in [1] handles provenance and proposes an index for graph filtering. The in-
dex stores the co-occurence of provenance identifiers and predefined predicate paths.
The approach also assumes that some of the quadruples produced by the ETL process
are all assigned a single hard-coded provenance identifier. Albeit not equivalent, our
provenance-aware fragment tree serves for graph filtering at a better performance with-
out additional assumptions. Besides [1] is not a caching approach.

Provenance management. The management of provenance is a crucial task for Linked
Data and RDF given the decentralized nature of the Web. There are several approaches
to encode provenance in RDF, such as reification [24], named graphs [4], singleton
properties [22], and embedded triples [14]. In this work we focus on workflow prove-
nance [26]. Other approaches study provenance in terms of the lineage of the query
results [13, 31]: expressions (e.g., a polynomial) that encode the origin of a result w.r.t
the triples in the dataset. The TripleProv engine [31] allows for native calculation of lin-
eage for the results of SPARQL queries. Our setting is significantly different, because
provenance is encoded as provenance entities described using RDF and the PROV-O
ontology [20]. Compared to the notion of lineage for query results, a provenance entity
can be seen as the identifier of a precomputed lineage.

6 Conclusions
In this paper, we have presented provenance-aware caching (PAC), an approach to cache
fragments of a provenance-augmented RDF graph in order to speed up provenance-
aware OLAP queries. We propose a fragmentation scheme for provenance-augmented
RDF data, and an approximative benefit model tailored for RDF cubes and OLAP
queries under memory constraints. Our techniques are query-load agnostic and our ex-
perimental evaluation shows that PAC outperforms the Jena TDB native cache and the
standard LRU caching strategy in real and synthetic data. The PAC principle can be
applied in scenarios where the query-load is unknown, e.g., to bootstrap the cache, or
when the workload changes constantly. It is also applicable in settings characterized by
locations of “fast” and “slow” access, such as a hybrid drives or remote storage servers.
We have also shown how to efficiently answer provenance-aware queries in an engine
based on named graphs. As future work, we envision to integrate explicit dynamic query
workloads into our framework, and to extend the fragment definitions beyond equality
constraints on the quadruples by, for example, using the provenance graph. All the data
and experimental results are available at http://qweb.cs.aau.dk/pac/.

Acknowledgments
This research was partially funded by the Danish Council for Independent Research
(DFF) under grant agreement no. DFF-4093-00301.

References
1. Kim Ahlstrøm, Katja Hose, and Torben Bach Pedersen. Towards Answering Provenance-

Enabled SPARQL Queries Over RDF Data Cubes. In JIST, 2016.
2. Barry Bishop, Atanas Kiryakov, Damyan Ognyanov, Ivan Peikov, Zdravko Tashev, and Rus-

lan Velkov. FactForge: A fast track to the Web of data. In SWJ, 2011.
3. Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani Thuraisingham. A

Language for Provenance Access Control. In CODASPY, 2011.
4. Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named Graphs, Prove-

nance and Trust. In WWW, 2005.
5. Roger Castillo. RDFMatView: Indexing RDF Data for SPARQL Queries. In SSWS, 2010.
6. Artem Chebotko, John Abraham, Pearl Brazier, Anthony Piazza, Andrey Kashlev, and Shiy-

ong Lu. Storing, Indexing and Querying Large Provenance Data Sets as RDF Graphs in
Apache HBase. In SERVICES, 2013.

7. James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases: Why,
How, and Where. In Foundations and Trends in Databases, 2009.

8. Dario Colazzo, Tushar I. Ghosh, François Goasdoué, Ioana Manolescu, and Alexandra
Roatis. WaRG: Warehousing RDF Graphs. In Bases de Données Avancées, 2013.

9. Richard Cyganiak and Dave Reynolds. The RDF Data Cube Vocabulary. W3C recommen-
dation, 2014. http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/.

10. Prasad M. Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F. Naughton.
Caching Multidimensional Queries Using Chunks. SIGMOD Rec., 27(2):259–270, 1998.

11. Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Networked Knowl-
edge - Networked Media, 2009.

12. Luis Galárraga, Kim Ahlstrøm Meyn Mathiassen, and Katja Hose. QBOAirbase: The Euro-
pean Air Quality Database as an RDF Cube. In ISWC, Posters & Demonstrations, 2017.

13. Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance Semirings. In PODS,
2007.

14. Olaf Hartig. Foundations of RDF* and SPARQL* - An Alternative Approach to Statement-
Level Metadata in RDF. In AMW, 2017.

15. Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi. Optimizing
Aggregate SPARQL Queries Using Materialized RDF Views. In ISWC, 2016.

16. Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, Dimitris Papadias, and Kian-Lee Tan. An
Adaptive Peer-to-peer Network for Distributed Caching of OLAP Results. In SIGMOD,
2002.

17. Benedikt Kämpgen, Sean O’Riain, and Andreas Harth. Interacting with Statistical Linked
Data Via OLAP Operations. In ILD, 2015.

18. Johannes Lorey and Felix Naumann. Caching and Prefetching Strategies for SPARQL
Queries. In ESWC (Satellite Events), 2013.

19. Michael Martin, Jörg Unbehauen, and Sören Auer. Improving the Performance of Semantic
Web Applications with SPARQL Query Caching. In ESWC, 2010.

20. Deborah McGuinness, Timothy Lebo, and Satya Sahoo. PROV-O: The PROV Ontology.
W3C recommendation, 2013. http://www.w3.org/TR/2013/REC-prov-o-20130430/.

21. Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. Sieve: Linked Data Quality As-
sessment and Fusion. In EDBT-ICDT, pages 116–123, 2012.

22. Vinh Nguyen, Olivier Bodenreider, and Amit Sheth. Don’t Like RDF Reification?: Making
Statements About Statements Using Singleton Property. In WWW, 2014.

23. Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Benchmark. Technical report,
UMass/Boston, 2009. http://www.cs.umb.edu/˜poneil/StarSchemaB.PDF.

24. Yves Raimond and Guus Schreiber. RDF 1.1 primer. W3C recommendation, 2014.
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

25. Andy Seaborne and Steven Harris. SPARQL 1.1 query language. W3C recommendation,
W3C, 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

26. Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis Christophides. On
Provenance of Queries on Semantic Web Data. In IEEE Internet Computing, 2011.

27. Jürgen Umbrich, Marcel Karnstedt, Aidan Hogan, and Josiane Xavier Parreira. Hybrid
SPARQL Queries: Fresh vs. Fast Results. In ISWC, 2012.

28. Jovan Varga, Alejandro A. Vaisman, Oscar Romero, Lorena Etcheverry, Torben Bach Peder-
sen, and Christian Thomsen. Dimensional Enrichment of Statistical Linked Open Data. In
Journal of Web Semantics, 2016.

29. Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De
Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple Pattern Fragments:
A Low-cost Knowledge Graph Interface for the Web. Web Semantics: Science, Services and
Agents on the World Wide Web, 37-38:184–206, 2016.

30. Gregory Todd Williams and Jesse Weaver. Enabling Fine-Grained HTTP Caching of
SPARQL Query Results. In ISWC, 2011.

31. Marcin Wylot, Philippe Cudre-Mauroux, and Paul Groth. TripleProv: Efficient Processing
of Lineage Queries in a Native RDF Store. In WWW, 2014.

32. Marcin Wylot, Philippe Cudre-Mauroux, and Paul Groth. Executing Provenance-Enabled
Queries over Web Data. In WWW, 2015.

