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The inherent incompleteness of web-extracted knowledge bases (KBs), was
one of the major motivations for the work presented in AMIE [4] and its suc-
cessor AMIE+1. The AMIE article introduces (a) an algorithm for fast mining
of Horn rules on large KBs and (b) a mining model that accounts for incom-
pleteness under the Open World Assumption (OWA). AMIE mines closed Horn
rules such as

hasChild(x, y), isMarriedTo(y, z)⇒ hasChild(x, z)

livesIn(x, y)⇒ isCitizenOf(x, y)

According to the first rule, if somebody is married and has a child, then her
spouse is also a parent of this child. While this rule holds quite often, it will
err if a person has children from different marriages. Thus, rules are assigned
a confidence score that measures the ratio of cases for which the rule draws
correct conclusions. In AMIE we propose the confidence under the Partial
Completeness Assumption (PCA). Unlike the Closed World Assumption, the
PCA admits that missing facts in KBs are not necessarily false. For instance, if
the second rule in our example concludes the nationality of a person for whom
the KB does not know the nationality, the standard CWA confidence counts this
as a miss, whereas the PCA confidence does not. On the hand, if the KB knows
the nationality of the person and rule predicts a different nationality, both the
PCA and the standard confidence penalize the rule.

Our example suggests that under the PCA, the gaps in the data become a
smaller impediment for rule mining. We have shown already the applicability of
such rules in automatic data engineering tasks [3, 2], even though our original
motivation was to apply the rules for data inference, i.e., to predict facts beyond
the KB. Such facts could, for example, be added to the KB or suggested as likely
answers to queries. To investigate the potential of our mining model for data
inference, we conducted a naive experiment that shows the suitability of the
PCA confidence for ranking logical rules as an alternative to the standard CWA
confidence. We ran AMIE on YAGO2 and took the top 30 most confident rules
according to the standard and the PCA confidence. We then use the rules to
infer statements that were not in the YAGO2. Our results show that the PCA
confidence identifies rules that produce many true predictions. Nevertheless, our
precision was in the range 30-45% at 300K unique predictions. This result clearly
suggests that if we want to use logical rules for effective data inference, we should
not naively produce predictions as we did. Notice also that our experimental
setup disregards the fact that a prediction can be inferred by multiple rules,

1Article under review
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Old dataset Rules Total hits Unique Hits

YAGO2 135 14K 12K
YAGO2 (const) 19028 79K 17K
DBpedia 2.0 117163 237536 149308

Table 1: AMIE for predicting facts on YAGO and DBpedia

because we measured precision on the set of unique predictions. This case is,
however, very common as Table 1 shows. Out of 14K predictions drawn from
YAGO2, 12K were unique. The difference becomes even more obvious when
we allow constant arguments in the atoms of rules, e.g., livesIn(x, USA) ⇒
speaks(x,English)2. This implies that some facts were indeed deduced by
multiple rules.

1 Rules for data inference

In a very simple experiment, we took the 135 rules mined by AMIE on YAGO2
and output all their predictions. For each prediction I kept track of the rules
that inferred it and verified its correctness on YAGO2s. For example the correct
prediction isCitizenOf (Roy Gibson, UK) was inferred from two logical rules:

• R1: isLocatedIn(f, b), livesIn(a, f)⇒ isCitizenOf(a, b) (0.48)

• R2: isLocatedIn(f, b), wasBornIn(a, f)⇒ isCitizenOf(a, b) (0.57)

where the number in parentheses is the rule’s PCA confidence. Intuitively,
different rules concluding the same fact should increase the confidence about the
correctness of that fact. We can therefore quantify the confidence of a prediction
as a function of the PCA confidence of its generating rules. Predictions with high
confidence can be then suggested as possible answers to queries or as candidates
to populate the KB.

Given a KB K and a statement f := r(x, y), f is a fact if f ∈ K, otherwise

it is a prediction. Let us define the boolean random variable f̂ = φ(f) where φ
is an interpretation function that determines whether a statement is true in the
real world, otherwise it is false or unknown. If we assume that KBs are a correct
representation of the real world, then ∀ f ∈ K : f̂ = true. This also implies
that the probability distribution of variable f̂ becomes trivial: P (f̂ = true) = 1

and P (f̂ 6= true) = 0. Hereinafter, I shall use f̂ to denote f̂ = true and ¬f̂
to express f̂ 6= true. Computing a confidence score for a prediction q /∈ K is
equivalent to calculate the probability P (q̂ | Ê), where Ê is the evidence, i.e., a
set of preconditions in the form of concrete assignments to random variables. For
our example prediction q := isCitizenOf (Roy Gibson, UK), Ê := {f̂1, f̂2, f̂3, f̂4}
with:

• f1 := isLocatedIn(London, UK)

• f2 := livesIn(Roy Gibson, London)

2As we will show later, this phenomenon is also aggravated from the dependencies among
rules
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• f3 := hasCapital(UK,London)

• f4 := wasBornIn(Roy Gibson,Manchester)

This formulation was designed with two goals in mind. First, to define a
connection between a prediction q and all the facts fi used to infer q from a
set of logical rules. Second, to allow for iterative inference so that previously
inferred predictions could become part of the preconditions for further rounds
of inference. Unlike the preconditions in our running example where P (f̂i) = 1
(as fi ∈ K), the probability distribution for the correctness of a prediction is
not trivial.

Once we have formulated the correctness of statements w.r.t. the real world
as random variables, we can borrow the concepts from Bayesian Networks to
construct a DAG that models the dependencies between the variables.

A Bayesian Network (BM) is a statistical graphical model designed to encode
the joint probability distribution of a set of variables as a directed acyclic graph.
Each node x in the graph represents a random variable. An edge from node x
to node y denotes statistical dependence between the variables represented by
the nodes, i.e., P (y | x) 6= P (y). Figure 1 shows a BN-like representation of our
inference example.
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Figure 1: A Bayesian Network representing the inference of fact from multiple
Horn rules.

Each node in the BN is associated to a random variable that represents the
truth of a statement or a conjunction of statements. For each instantiation of a
rule B ⇒ r(x, y), we draw an edge from the node associated to the antecedent
to the node associated to the succedent. If the antecedent consists of multiple
atoms, then it binds to multiple statements. We model this situation by in-
troducing an additional variable representing the truth of a conjunction of the
statements, e.g., f̂12 and f̂34. Furthermore, each node is associated to a con-
ditional probability table (CPT). This table stores the probability distribution
of the node given its ancestors. The CPT is trivial for facts, since they do not
have ancestors and are assumed as ground truth. The CPT of a conjunction of
statements is built according to the rules of deterministic logical conjunction.
Figure 1 illustrates the CPT for f̂12. The table for f̂34 follows the same princi-
ple. The CPT of a prediction depends on the statements and rules that implied
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the prediction. Our goal is to define such CPT. We propose to calculate it as
follows for our example:

P (q̂ | f̂12, f̂34) := 1− (1− PCA(R1))(1− PCA(R2)) (1)

P (q̂ | f̂12,¬f̂34) := PCA(R1) (2)

P (q̂ | ¬f̂12, f̂34) := PCA(R2) (3)

P (q̂ | ¬f̂12,¬f̂34) := α (4)

If the antecedents of all the predicting rules hold, the probability of q̂ is 1
minus the probability that none of the rules hold. Such probability is defined as 1
minus the PCA confidence of the rules. Note that the product of complementary
probabilities assumes that the rules are independent. Whereas this assumption
seems feasible at a first glance, we will later show some cases where it does not
hold. If only one of the rules fires, then the probability depends solely on the
PCA confidence of that rule. When none of the rules hold, we can define a
default probability α. A value of 0 means that the rules in our model are the
only explanation for the prediction. A value greater than 0 models the case our
prediction can be true from external reasons not captured in our model. Recall
that P (¬q̂ | E) = 1− P (q̂ | E)

1.1 Iterative inference

Consider a KB K containing the facts f1 := isMarriedTo(Roy Gibson,Alice)
and f2 := isCitizenOf (Roy Gibson,England) and the logical rules:

• R1: isCitizenOf(a,England)⇒ isCitizenOf(a, UK) (0.9)

• R2: isMarriedTo(a, b), isCitizenOf(a, c)⇒ isCitizenOf(b, c) (0.6)

By applying R1 on f1 we can deduce p := isMarriedTo(Roy Gibson, UK).
f1, f2 and R2 allow us to deduce q := isCitizenOf (Alice, England). From p
and q, both rules infer r := isMarriedTo(Alice, UK). Figure 2 depicts the BN
representing the two rounds of inference on K using the rules above. Note that
we use the formulas introduced in the previous section in the CPT for r̂.

2 Answering queries with Bayesian Networks

2.1 Confident predictions

Identifying predictions that are likely true has a great value for data main-
tanance. For instance, if the predictions are sent to human evaluators to popu-
late the KB, pruning the non-promising candidates can save a lot of work. With
this application in mind, we propose to build a BN as described in the previous
section in order to answer queries of the form P (q̂ | K̂), where q /∈ K and the
evidence are the facts in K. Since probably only a few facts will take part in the
deduction of q, the expression can be rewritten as P (q̂ | Ê), where Ê ⊆ K̂ is a
set of random variables associated to the facts that took part in the deduction
of q. In the example presented in Figure 2, Ê = {f̂1, f̂2}. We can calculate this

value as follows (recall that P (f̂1) = P (f̂2) = P (f̂12) = 1):
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Figure 2: A Bayesian Network representing an iterative inference process.

P (r̂ | f̂1, f̂2) = P (r̂,f̂1,f̂2)

P (f̂1,f̂2)
= P (r̂, f̂1, f̂2) =

P (r̂ | f̂1p)P (f̂1)P (p̂ | f̂2)P (f̂2)P (q | f̂12)P (f̂1)P (f̂2) =
0.96× 0.9× 0.6 = 0.5184

More formally, given K and a set of rules R with different PCA confidence
scores, our goal is to infer a set of predictions P such that ∀p ∈ P : (K,P) |=
p ∧ P (p̂ | K̂) ≥ δ. Here δ ∈ (0, 1] is a confidence threshold. This models the
scenario when we are only interested in the predictions above a given confidence
threshold.

2.2 Arbitrary conjunctive queries

Coming back to the example in Figure 2, imagine we want to include our pre-
dictions in the result of the query Q(y) = y : isCitizenOf(Alice, y). In a
non-probabilistic setting, the query would return an empty set, as no national-
ity for Alice is known in the KB. We could, however, provide our predictions
about Alice’s nationality as part of the answer, ranked by their likelihood. In
this example the answer would be: England (0.6) and UK (0.5184), where the

number in parentheses is P ( ̂isCitizenOf(Alice, y) | K̂) for each value of y. Re-
call that the semantics of this ranking use only the KB as evidence, thus the
probability that Alice is a citizen of UK does not consider the fact that she
could be citizen of England (as this was also deduced). If for instance the user
has certainty about any of the answers in the ranking, she could add them to
the evidence and recompute the ranking for the remaining answers. If for in-
stance, the user adds q := isCitizenOf (Alice, England), the probability of Alice
being a citizen of UK (r := isMarriedTo(Alice, UK)) becomes 0.96 equivalent

to P (r̂ | K̂ ∪ {q̂}).
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For more complex queries, there are further considerations. For example,
if we want to integrate our predictions into the answers of the query Q(x) =
x : isCitizenOf(x, y) ∧ isLocatedIn(y,Europe), we need to calculate the
probability that Alice is a citizen of a country located in Europe. One may be
tempted to calculate it as 1 − (1 − P (q̂ | K̂))(1 − P (r̂ | K̂))3. However, q̂ and
r̂ are not independent, therefore we have account for such dependency when
computing P (q̂ ∨ r̂ | K) from the BN representation.

2.3 Independence of rules

Consider a KB containing the facts f1 := isCitizenOf (The Queen,England),
f2 := hasOfficialLanguage(England,English) and the following logical rules:

• R1: isCitizenOf(f, b), hasOfficialLanguage(b, c)⇒ speaks(f, c) (0.80)

• R2: isCitizenOf(f,England)⇒ speaks(f,English) (0.80)

Both rules would conclude that p := speaks(The Queen,English), however
it is clear that R1 subsumes R2, therefore the rules are not independent. This
is certainly a problem when defining the CPT for p̂, because our definition
for P (p̂ | f̂1, f̂2) assumes independence between rules. The independence as-

sumption overestimates the probability P (p̂ | f̂1, f̂2) because it counts the same
statistical evidence twice.

While a syntactic query containment test can identify subsumption depen-
dencies between rules, e.g., ~B ∧ r(x, y)⇒ rh(x′, y′) v ~B ⇒ rh(x′, y′), arbitrary
correlations can stand even between rules with apparently no syntactic connec-
tion. In this case, only an independence test on the actual data can spot such
anomalies. If for two rules R, R′ it holds that R v R′, some alternatives are (a)
to focus on precision and take the most specific rule, (b) to focus on recall and
take the most general rule, (c) take the rule with highest gain g where

g(R) = recall(R)× PCA(R)

where recall(R) is the number of predictions drawn from rule R. This ap-
proach focuses only in pairwise correlations, even though correlations could
occur among arbitrary sets of rules.

2.4 Integrity constraints

Horn rules encode regularities that hold often in the data but not necessarily
always. They are soft constraints. In contrast a hard constraint is a rule that
holds (or should hold) always. Violations of hard-constraints in KBs are con-
sidered bugs in the data. We are interested in functional and cardinality hard
constraints, e.g., a person must have at most one place of birth. While these
types of constraints could be mined from KBs using our machinery, the gaps
and noise in the data makes very hard to differentiate confident soft constraints
from hard constraints. On the other hand, probabilistic approaches for infer-
ence are not affected by this phenomenon as they do not need to treat hard
constraints in a special way. Nevertheless, the BN model per se is in principle

3As in the context of tuple independent probabilistic databases
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unable to represent inference using Horn rules and cardinality constraints. To
see why, consider a KB K containing the time-agnostic4 facts

• f1 := hasChild(Liz Taylor,Maria)

• f2 := isMarriedTo(Liz Taylor,Richard Burton)

• f3 := isMarriedTo(Liz Taylor, John Warner)

and the rules:

• R1 : hasChild(x, y), isMarriedTo(y, z)⇒ hasChild(x, z) (0.60)

• R2 : hasChild(x, y)⇒ πcount(x)γy(hasChild(x, y)) ≤ 2 (1.0)

The second rule is a hard cardinality constraint stating that a person can
have at most two parents. In this example, R1 allows us to infer:

• p := hasChild(Richard Burton,Maria)

• q := hasChild(John Warner,Maria)

Now imagine we want to plug R2 into our statistical graphical model. [1]
proposes two different semantics for iterative data inference in Datalog in the
presence of datalog rules and functional constraints (FD). Under the fact-at-
a-time semantics, each iteration produces a single fact. If the fact violates a
functional constraint, it is rejected. These semantics are referred in [1] as non-
deterministic fact-at-a-time (nfact) because the result of the process depends
on the order of selection of the rules and facts for inference. In our previous
example, two rounds of inference5 under the nfact semantics would lead to
two possible outcomes: {f1, f2, f3, p} or {f1, f2, f3, q}, depending on whether f2
or f3 are used for deduction. Under the set-at-a-time semantics (nsat), each
stage produces a maximal subset of derivable facts that respects the FDs and
is entailed both from K and the facts inferred so far, i.e., K ∪ P . We adapt
these ideas to our setting from the observation that cardinality constraints are a
generalization of functional constraints, i.e., a FD is a 1-cardinality constraint.
In our previous example, inference under the nsat would not produce any new
facts since it is impossible to add two extra parents to Maria without violating
rule R2. A prediction p is called possible if P (p̂ | K̂ ∪ P̂) > 0 at the end of the
inference process. [1] shows that any possible prediction p under nsat is also
possible under nfat. The converse statement does not hold as our example shows.
We propose a different approach: apply deduction under the nsat semantics
ignoring any functional or n-cardinality constraints. If a set of predictions P
can potentially violate a constraint, we represent this as clique, that models the
fact that the belief in any of the predictions in the clique does affect the belief
in the other predictions. Moreover, if a prediction in P may conflict with a fact
in K, the flow of influence goes from the certain to the uncertain statement.
Figure 3 illustrates this idea applied to the BN for our last example. The edges
in gray are derived from the cardinality constraint R2.

4To the best of my knowledge no inference approach on web-extracted KB uses the temporal
dimension of facts.

5The second round would conclude that is not possible to infer anything else.
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Figure 3: A Bayesian-like Network representing an inference process with a
2-cardinality constraint.

We point out two observations. First and obvious, this representation does
not meet the definition of a BN because it contains cycles. Second, these depen-
dencies matter only if we use the predictions in P either as evidence for queries
or as preconditions for further rounds of inference. To grasp this notion, imagine
we halt the inference routine at this point and omit the undirected edges in our
example, so that p̂ and q̂ become leaves in the directed graph. In the simplest
scenario, if we want to rank the potential parents of Maria by likelihood given
the KB, i.e., rank the answers to Q(x) := y : py := hasChild(y,Maria) by

P (p̂y | K̂), we do not need to model the interdependencies between the pre-
dictions because the probability associated to each answer is not suppose to
consider the other answers as evidence. In contrast, imagine the user knows
that p := hasChild(Richard Burton,Maria). If she adds this to the evidence,

the score for q := hasChild(John Warner,Maria), i.e., P (q̂ | K̂ ∪ {p̂}) becomes
zero in compliance with the cardinality constraint R2. This is equivalent to add

a directed edge from p̂ to q̂ on the fly and write zero to the entry P (q̂ | p̂, f̂13)
(table in gray in Figure 3).

Now imagine we have an additional rule:

R3 : hasChild(x, y), hasChild(z, y)⇒ isMarriedTo(x, z) (0.50)

and the rule lets us infer r := isMarriedTo(Richard Burton, John Warner).
Since p and q cannot be true without violating R2, an inference approach could
refrain itself from inferring r. This is possible under hard cardinality constraints,
however it is unlikely to mine hard cardinality constraints on noisy and incom-
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plete web-extracted KBs. Unless someone defines the integrity constraints man-
ually, those learned by a statistical rule mining approach will not have confidence
1.0. If we relax R2 by assigning it confidence 0.95 in our previous example, we
could still get a small probability for prediction r by redefining the construction
of the CPT for p̂q as shown in Figure 4. This CPT does not implement the
rules of logical conjunction, instead it encodes the “compatibility” between the
different truth values of the individual random variables according to constraint
R2.
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Figure 4: Encoding cardinality constraints in the CPT for conjunctions of state-
ments.

The ideas presented in this section are an attempt to extend the framework
of Bayesian Networks to cope with cardinality constraints in our scenario. How-
ever, Markov Logic Networks were originally designed to model situations when
for a given pair of random variables, influence flows in both directions.
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3 Modelling the problem with Markov Logic Net-
works

A Markov Logic Network (MLN) is a graphical model that can represent the
joint distribution of a set correlated variables. Like Bayesian Networks, they
rely on a graph representation, but instead of modeling pairwise correlations as
directed edges, they use undirected edges with factors that encode the level of
agreement or compatibility between arbitrary groups of random variables. More
formally, a factor Φ(X̂), with X̂ := {x̂1, . . . , x̂m} is a function Φ : dom(x̂1) ×
· · ·×dom(x̂m)→ R. The x̂i are random variables and dom(x̂i) is the domain of
x̂i, that is, the set of possible values that x̂i can take. In our scenario dom(x̂i) =

{T, ∅}. Φ(X̂) models the level of agreement for each possible combination of

values for the variables in X̂, where higher values denote higher compatibility.
Unlike BNs, there is no 1-1 mapping from factors to nodes in MLNs. Factors,
also called potential functions, factorize over subgraph cliques. To illustrate this
concept, consider the MLN in Figure 5 that models our last example.
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Figure 5: A MLN representation for an inference process with a 2-cardinality
constraint.

For simplicity we show only two factors. The full MLN for this particu-
lar inference process consists of 6 factors, one per maximal subgraph clique:

Φ(f̂1, f̂12), Φ(f̂2, f̂12), Φ(f̂1, f̂13), Φ(f̂3, f̂13), Φ(f̂12, p̂), Φ(f̂13, q̂), Φ(f̂1, p̂, q̂). We
derive some observations:

• Except from Φ(f̂1, q̂, r̂), all cliques in our factorization contain 2 vertices.

• This factorization is not unique. In our example, we use a maximal clique,
i.e., Φ(p̂, q̂, r̂), however nothing prevent us from factorizing over the non-
maximal cliques Φ(p̂, q̂), Φ(p̂, r̂) and Φ(q̂, r̂).

• Φ(f̂13, q̂) is a rearrangement of the CPT used in BN representation of the
process, however the factors are not necessarily probability distributions.
Still they are designed to model the confidence we have on a particular
combination of values for the variables. For instance, factor Φ(p̂, q̂, r̂)
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assigns the probability of violating the soft cardinality constraint as score,
to the case when Maria has three parents. In contrast, the other cases
that do not violate the constraint have a higher compatibility score, the
confidence of the cardinality constraint. This decision for the scores is
arbitrary.

• The second half of Φ(f̂1, p̂, q̂) can be omitted since we know that f1 is

certain. The shortened version of the factor is denoted as Φ[f̂1](p̂, q̂) in
the literature.

MLNs model the joint probability distribution of a set of variables as a
normalized product of factors. Let us denote the set of variables of the i-th

factor as D̂i (e.g., D̂1 := {f̂1, f̂12}) and the number of factors as n. If X̂ = K̂∪P̂
is the whole set of random variables in the network, a MLN formulates the join
probability distribution as follows:

Φ(X̂ ) :=
1

Z

n∏
i=1

Φ(D̂i)

where Z is the normalization constant:

Z :=
∑

x1,...,x|X|

n∏
i=1

Φ(Di)

Algorithms such as Belief Propagation or Variable Elimination[5] are iter-
ative methods designed to calculate the stationary probability distribution of
the system, that is, the probabilities P (x̂i). As we discussed in the analysis

for Bayesian Networks, one of our goals is to calculate P (q̂ | K̂) for a given
prediction q /∈ K. From the definition of conditional probability we have:

P (q̂ | K̂) =
P (q̂, K̂)

P (K̂)
= P (q̂, K̂) =

∑
ŵ∈X̂−K̂,ŵ 6=q̂

P (q̂, ŵ)

P (K̂) =
∏

fi∈K P (f̂i) = 1 due to the assumption that the KB contains
only true information and that the truthness of each fact is independent from
truthness of the other facts. The sumation over the term P (q̂, ŵ) considers the
join probability distribution of q̂ and each ŵ that is neither q nor lies in the
evidence set K̂.

4 Probabilistic Databases

Probabilistic databases are an attractive representation system in our setting.
They allow us to represent the uncertainty of predictions as well as to keep
track of the sources that influence the belief of a given prediction. For iterative
inference, pc-tables are the most suitable representation. Table 6 illustrates a
pc-table for the example illustrated in Figure 2.

In a pc-table each tuple is assigned a boolean expression Ψ[X] on a set of
boolean variables X. Like in our representation based on graphical models,
each statement is mapped to a boolean variable. We define additional boolean
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Statements Formula (Ψ[fi])

f1 := marriedTo(Roy Gibson,Alice) f̂1
f2 := isCitizenOf(Roy Gibson,England) f̂2
p := isCitizenOf(Roy Gibson, UK) (R̂1 ∧ f̂2) ∨ p̂
q := isCitizenOf(Alice, England) (R̂2 ∧ f̂1 ∧ f̂2) ∨ q̂
r := isCitizenOf(Alice, UK) (R̂1 ∧Ψ[q]) ∨ (R̂2 ∧Ψ[p] ∧ f̂1) ∨ r̂

f̂1 P (f̂1)
T 1.0
∅ 0.0

f̂2 P (f̂2)
T 1.0
∅ 0.0

p̂ P (p̂)
T 0.0
∅ 1.0

q̂ P (q̂)
T 0.0
∅ 0.0

r̂ P (r̂)
T 0.0
∅ 1.0

R̂1 P (R̂1)
T 0.9
∅ 0.1

R̂2 P (R̂2)
T 0.7
∅ 0.3

Figure 6: pc-table representation for our example of iterative inference.

variables R̂i for the rules used for inference. The pc-table also stores the prob-
ability distribution of the variables. Facts in the KB are certain, whereas de-
ductions are by default non-true. For a logical rule Ri, P (R̂i) = PCA(Ri) and

P (¬R̂i) = 1− PCA(Ri). Table 6 shows the probability distribution for all the
variables below the table storing the facts. The main table contains the facts
and their associated boolean formulas. For example, the formula for prediction
r, denoted as Ψ[r] states that r is true if R1 and q are true or if R2, p and f1
are true. Some observations:

1. The representation in this example could be simplified by replacing f̂i with
true.

2. The boolean variable associated to each prediction (at the end of the ex-
pressions) can be used to add the prediction to the evidence set for queries

of the form P (q̂ | Ê). Such probability can be calculated by evaluating

Ψ[q](Ê) and calculating the probability of the resulting expression. For

example P (r̂ | f̂1, f̂2, q̂) = P (Ψ[q](f̂1, f̂2, q̂)) = P (R̂1 ∨ (R̂2 ∧ (R̂1 ∨ p̂))∨ r̂).
r̂ does not affect the probability score.

3. Rules are assumed to be independent, even though pc-tables do not restrict
to single probability distributions. In our example if R1 and R2 happened
to be correlated, we could have a table storing their join distribution and
use it in the evaluation of queries.

4. This model can be extended to support functional and cardinality con-
straints, however it seems tricky. In this example we could model a hard
functional constraint on nationality by making the truth values for r and q
mutually exclusive. We can achieve this if we rewrite their corresponding
formulas as follows:

Ψ′[r] := Ψ[r] ∧ ¬q̂

Ψ′[r] := Ψ[q] ∧ ¬r̂
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Since p and r are predictions, P (¬r̂) = P (¬p̂) = 1 . If for instance one

of the facts is added to the evidence, e.g., r̂, we get P (q̂ | K̂ ∪ {r̂}) =

P (Ψ′[q](K̂ ∪ {r̂})) = P (Ψ[q](K̂) ∧ false) = P (false) = 0.

Modelling arbitrary functionality constraints increases the complexity of the
boolean formulas. In general if we have a set P = {p1, . . . , pk} of predictions
that may violate a hard n-cardinality constraint (k > n), we can enforce the
constraint in the boolean formula for a given prediction pi as

Ψ′(pi) := Ψ(pi) ∧
∨

s∈Pn(P̂−{p̂i})

¬s ∧ sc

where Ψ(pi) is the original boolean formula for pi without cardinality con-
straints, Pn stands for power set of size n and sc is the complement of s, i.e.,
sc = (P̂ − {p̂i}) − s. We define ¬{x1, . . . , xn} = {¬x1, . . . ,¬xn}. Soft n-
cardinality constraints are much more tricky to model in a pc-table. They
would require us to write down a probability distribution for the combinations
of truth values for the potentially contradicting statements, similarly as we did
in the context of MLNs.
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