unibz

Institut Mines-Télécom

Predicting Completeness in Knowledge Bases

Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian Suchanek

February 8th, 2017 WSDM'17, Cambridge

• KBs are highly incomplete.

- KBs are highly incomplete.
 - 2% of people have a father in Wikidata.

- KBs are highly incomplete.
 - 2% of people have a father in Wikidata.
- We do not know where the incompleteness lies.

- KBs are highly incomplete.
 - 2% of people have a father in Wikidata.
- We do not know where the incompleteness lies.
 - A person without spouse in the KB could be incomplete or single.

- KBs are highly incomplete.
 - 2% of people have a father in Wikidata.
- We do not know where the incompleteness lies.
 - A person without spouse in the KB could be incomplete or single.
- Problems for data producers and consumers.

- KBs are highly incomplete.
 - 2% of people have a father in Wikidata.
- We do not know where the incompleteness lies.
 - A person without spouse in the KB could be incomplete or single.
- Problems for data producers and consumers.
 - Consumers: no completeness guarantees for queries.
 - Producers: which parts of the KB need to be populated?

Completeness

We focus on queries of the form SELECT ?x WHERE { subject relation ?x }

Completeness

We focus on queries of the form SELECT ?x WHERE { Barack Obama hasChild ?x }

Completeness

We focus on queries of the form SELECT ?x WHERE { Barack Obama hasChild ?x }

Obama

• Function that assigns a completeness value to pairs subject-relation (s, r).

- Function that assigns a completeness value to pairs subject-relation (s, r).
 - <u>PCA oracle</u>: (s, r) is complete if the KB knows at least one object *o*.

- Function that assigns a completeness value to pairs subject-relation (s, r).
 - <u>PCA oracle</u>: (s, r) is complete if the KB knows at least one object *o*.

- Function that assigns a completeness value to pairs subject-relation (s, r).
 - <u>PCA oracle</u>: (s, r) is complete if the KB knows at least one object *o*.

Oracles can be evaluated via precision and recall.

PCA oracle Precision = 2/3Recall = 2/5

- CWA: cwa(s, r) = true
- PCA: $pca(s, r) = \exists o : r(s, o)$
- Cardinality: card(s, r) = $\#(o : r(s, o)) \ge k$
- Popular entities: $popularity_{pop}(s, r) = pop(s)$
- No-chg over time: $nochange_{chg}(s, r) = \sim chg(s, r)$
- Star : star_{r1,..,rn}(s, r) = $\forall i \in \{1,..,n\}$: $\exists o : r_i(s, o)$
- Class: $class_c(s, r) = type(s, c)$
- AMIE (rule mining)

- CWA: cwa(s, r) = true
- PCA: $pca(s, r) = \exists o : r(s, o)$
- Cardinality: card(s, r) = $\#(o : r(s, o)) \ge k$
- Popular entities: $popularity_{pop}(s, r) = pop(s)$
- No-chg over time: $nochange_{chg}(s, r) = \sim chg(s, r)$
- Star : star_{r1,..,rn}(s, r) = $\forall i \in \{1,..,n\}$: $\exists o : r_i(s, o)$
- Class: $class_c(s, r) = type(s, c)$ Learned
- AMIE (rule mining)

oracles

AMIE oracle

• It combines all the other oracles using rules.

AMIE oracle

• It combines all the other oracles using rules.

notype(x, Adult), type(x, Person) \Rightarrow complete(x, hasChild) class_{non-adult}(s, r) dateOfDeath(x, y), lessThan₁(x, placeOfDeath) \Rightarrow incomplete(x, placeOfDeath)

AMIE oracle

• It combines all the other oracles using rules.

notype(x, Adult), type(x, Person) \Rightarrow complete(x, hasChild) class_{non-adult}(s, r) dateOfDeath(x, y), lessThan₁(x, placeOfDeath) \Rightarrow incomplete(x, placeOfDeath)

- Training data obtained by two means:
 - Automatic: e.g., everyone must have a nationality.
 - Crowd-sourcing: ask mechanical turks for more objects in the web.

Experimental evaluation

Evaluating oracles

F1 measure of the oracles in YAGO3.

Relation	CWA	PCA	Class	AMIE
diedIn	60%	22%	99%	96%
directed	40%	96%	0%	100%
graduatedFrom	89%	4%	92%	87%
hasChild	71%	1%	78%	78%
hasGender	78%	100%	95%	100%
hasParent	1%	54%	0%	100%
isCitizenOf	4%	98%	5%	100%
isConnectedTo	87%	34%	88%	89%
isMarriedTo	55%	7%	57%	46%
wasBornIn	28%	100%	0%	100%

Summary

- It is possible to predict completeness in KBs with 100% precision in some cases.
 - By combining different simple oracles (signals).
- Future work
 - Study of more signals of completeness
 - Reasoning with completeness information
 - Completeness predictions as counter-evidence for learning methods in KBs.

Visit my poster ->

More information

Predicting Completeness in Knowledge Bases unibz

Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian Suchanek

Problem

KBs do not know how much they know

- KBs are incomplete • 2% of people in YAGO have a known citizenship.
- No guarantees that queries on KBs return complete results.
- A person without a spouse in the KB could be single or her spouse unknown.
 Data producers do not know where to focus
- Data producers do not know where to focus information extraction efforts.

Completeness

Given the *real-world* KB K*, a query q is complete in a KB K iff $q(K^*) \subseteq q(K)$.

We focus on queries like:

SELECT ?x WHERE { Barack Obama hasChild ?x }

We want to predict if K knows all the results of the query.

Completeness oracles

<u>Simple</u>

Parameterized

Closed World Assumption oracle: cwa(s, r) Baseline oracle: The KB is complete.

Partial Completeness Assumption oracle: pca(s, r) (*s, r*) is complete if the KB knows at least one object.

Popularity: popular $_{pop}(s, r)$ (*s*, *r*) is complete if *s* is among the top 5% entities with most entities in the KB.

No change: nochange_{pop}(s, r) (s, r) is complete if the objects of (s, r) have not

(s, r) is complete if the objects of (s, r) have not changed w.r.t. a previous version of the KB. Star oracle: star_{r1...m}(s, r) (s, r) is complete if we know object values for other properties $r_1, ..., r_n$ of s.

producer(x, z), writer(x, w) \rightarrow complete(x, director)

Class oracle: $class_{c}(s, r)$ The KB is complete for entities in class C.

 $Pope(x) \rightarrow complete(x, hasChild)$

AMIE oracle

It uses Horn rules [1] combining all other oracles to predict completeness. In case of contradictions, the rule with higher support and confidence prevails.

 $\begin{aligned} & \mathsf{President}(x), \ \mathsf{moreThan}_{\mathfrak{g}}(x, \ \mathsf{hasChild}) \rightarrow \mathsf{complete}(x, \ \mathsf{hasChild}) \\ & \mathsf{dateOfDeath}(x, y), \ \mathsf{lessThan}_{\mathfrak{g}}(x, \ \mathsf{placeOfDeath}) \rightarrow \mathsf{incomplete}(x, \ \mathsf{placeOfDeath}) \end{aligned}$

[1] L. Galárraga, C. Teflouidi, K. Hose, F. Suchanek. AMIE: Association Rule Mining Under Incomplete Evidence. WWW 2013.