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ABSTRACT
L’extraction de règles d’association dans une base de con-
naissance consiste en la découverte de façon automatique de
règles logiques à partir de faits connus. Cette tâche reste
cependant un défi pour plusieurs raisons. D’abord, les bases
de connaissances ne contiennent pas d’informations néga-
tives, c’est-à-dire, les méthodes d’extraction de règles ne
disposent pas de contre-exemples. En outre, les bases de
connaissance existantes sont volumineuses avec des millions
de faits ; cela accroit l’espace de recherche de manière con-
sidérable. Les systèmes d’extraction de règles actuels ré-
duisent l’espace de recherche par une exclusion systématique
des candidats peu prometteurs pendant le processus de con-
struction des règles.

Dans cet article, nous proposons un processus d’extraction
de règles transparent à l’utilisateur au travers un modèle de
démonstration interactif.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
A knowledge base (KB) is a collection of machine-readable

information designed to model a certain domain of knowl-
edge. Initiatives such as YAGO [19], DBpedia [2], Wiki-
data1, and the Knowledge Vault [7], among others, have con-
structed large-scale KBs about people, places, organizations,
etc., by applying Information Extraction (IE) techniques on
the Web [8, 19, 6, 3]. KBs are also prominent in the Life Sci-
ences, with projects such as BioRDF2 or UniProt3. KBs are

1http://www.wikidata.org
2http://bio2rdf.org/
3http://www.uniprot.org/
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crucial when computers have to process natural language
text in a semantic fashion. The Knowledge Vault, for in-
stance, allows the Google search engine to identify concepts
and proper names in the words of queries. This facilitates
the retrieval of answers about real-world entities instead of
pages matching the words in the query.

KBs can be mined for patterns and rules. For instance, we
could learn that Grammy awardees frequently play guitar.
We could also find out that usually, people live in the same
place as their spouses. If we resort to a datalog-like notation
of facts, these examples can be formulated as logical rules:

musicalRole(x,Guitar)⇐ wonPrize(x,Grammy) (1)

livesIn(x, y)⇐ isMarriedTo(z, x) ∧ livesIn(z, y) (2)

These rules provide not just insight by themselves, they
can also be used to predict information or propose correc-
tions to the data. For example, assume that the KB knows
livesIn(Barack Obama, Washington) and marriedTo(Barack
Obama, Michelle) but does not know the place of residence
of Michelle. Then we can use the second rule to deduce
livesIn(Michelle, Washington), that is, rules can be used to
deduce new information [10]. We can also use the rules to
correct erronous facts. If, say, the KB states that Michelle
lives in a different city, then this statement can be flagged as
suspicious. Other applications of rules include data mainte-
nance tasks such as schema inference [20], KB alignment [11],
or KB canonicalization [9].

Rule mining on KBs is a challenging endeavor for multiple
reasons. First, today’s KBs scale up to millions of facts and
entities, and thus the search space for rule mining is huge.
Second, Web-extracted KBs often contain gaps and noise
that hinder the discovery of frequent and interesting pat-
terns. Third, while mining logical rules on structured data
has been widely studied by the Inductive Logic Program-
ming (ILP) community, traditional ILP methods require ex-
plicit counter-examples. KBs, in contrast, operate under
the Open World Assumption (OWA) and do not represent
negative information.

AMIE [10] is a system that tackles the aforementioned
challenges. The system is designed to mine rules on large
KBs under the OWA. This is possible thanks to a novel
confidence metric that gauges the quality of a rule even in
the absence of counter-examples. Furthermore, AMIE is
very efficient, i.e., it can mine rules on KBs with millions of
facts in a matter of minutes. The key of AMIE’s scalability is
its tailored data-storage implementation and its wide range
of pruning techniques, which cut out unpromising rules early
on in the mining. These techniques include thresholding on

http://www.wikidata.org
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support and confidence values, exploiting monotonicity, and
a lookahead on the next step.

To the user, however, the rule mining process appears as
a black box: In its default setting, AMIE does not take any
parameters or language bias as input, and so the user just
points AMIE to the KB file and lets her run. AMIE takes
some minutes to load the data and compute the rules, and
then outputs the result. Thus, the user does not actually
understand how these rules are mined or why certain rules
were not mined.

With this demo, we aim to shed light on the inner work-
ings of AMIE. We want to show the user why certain rules
are mined, for what reason certain others are discarded, and
how AMIE maneuvers in a search space that appears near
infinite to the user. Our demo allows the user to “join”
AMIE live in the mining process, and to see and influence
the decisions that AMIE makes.

2. RELATED WORK
Several systems have been developed for rule mining [21,

17, 4, 12, 15, 5, 14, 16] on KBs. None of them, however,
is explicitly designed to mine rules on large and potentially
incomplete KBs under the OWA as AMIE. WARMR [12]
is a system that reconciles ILP and association rule mining.
In the spirit of traditional association rule mining, WARMR
operates under the Closed World Assumption (CWA), that
is, if a rule makes a prediction that is not present in the
KB, the system counts it as a counter-example for the rule.
ALEPH [14] is another ILP system, which offers a suite of
different metrics to evaluate the quality of rules. One of
them is the positives-only learning function, which does not
require explicit counter-examples, but evaluates rules based
on their length, their number of positive examples and the
number of randomly generated facts covered by the rule.
In [10] it is shown that AMIE’s confidence metric outper-
forms ALEPH’s positives-only learning function in terms of
precision, when the rules are used for data inference. Quick-
foil [21] is a traditional ILP system, which unlike WARMR
or ALEPH, scales to millions of facts. Quickfoil, on the
other hand, requires the user to provide explicit negative
information for rule induction.

There have been also some work on unveiling the inter-
nals of rule mining to the users, and showing its applica-
tions. Crowdminer [1] is an interactive system that ap-
plies association rule mining techniques on data collected
from the crowd. The system combines a proactive crowd-
sourcing approach to ask the users the most benefitial ques-
tions (those that maximize the knowledge gain) about their
well-being practices such sports or dietary habits. The sys-
tem allows the user to navigate through the most signif-
icant association rules and their metrics, e.g., for Crowd-
miner, a transaction is a bag of terms and rule looks like
{coffee} ⇐ {headache}. SPIRE [13] is a tool targeted to data
analysts that allows for intuitive visualization of the rule
mining search space. One particularity of SPIRE is its sup-
port for negative conditions in rules, e.g., in our context rules
such as ¬deathP lace(x, z)⇐ is(x, LivingPerson). The sys-
tem can help data scientists identify the rules and correla-
tions that are relevant to certain application or scenario, in
particular when rules are numerous.

3. PRELIMINARIES
Logical rules are built on atoms. An atom is of the form

r(x, y), where r is a relation x and y are either entities (such
as Barack Obama) or variables (such as a). At least one
of the arguments has to be a variable. A Horn rule is an
expression of the form

r(x, y)⇐ B

where r(x, y) is the head or conclusion of the rule, and
B is a sequence of atoms r1(x1, y1), . . . , rm(xm, ym) called
the body. Two atoms are connected if they share at least
one variable. A rule is connected if every atom in the rule is
transitively connected to every other atom. A rule is closed
if every variable appears in at least two different atoms.

Rules encode patterns that occur frequently in the data.
This notion of frequency is measured by the support of the
rule. Support is calculated as

supp(r(x, y)⇐ B) := #(x, y) : ∃z1, ..., zm : r(x, y) ∧B

Here, #(x, y) : Φ are the number of pairs (x, y) that ful-
fill the condition Φ in the KB. A normalized version of the
support is called the head coverage and is defined as:

hc(r(x, y)⇐ B) :=
supp(r(x, y)⇐ B)

#(x, y) : r(x, y)

The head coverage normalizes the support of the rule over
the size of the head relation. This is convenient for KBs with
small relations that would be ignored even for reasonable
support thresholds. Support and head coverage are mono-
tonic metrics, i.e., the addition of new atoms to a rule will
never increase its support. This property is crucial for the
AMIE algorithm. Support and head coverage are measures
of statistical evidence. However, they do not gauge the pre-
cision of the rule. This dimension is taken into account by
the standard confidence metric:

stdconf(r(x, y)⇐ B) :=
supp(r(x, y)⇐ B)

#(x, y) : ∃z1, ..., zm : B

The standard confidence normalizes the support of the
rule by the number of bindings of the head variables that
match the antecedent of the rule. In other words, it mea-
sures the ratio of correct conclusions drawn from the rule.
The standard confidence operates under the Closed World
Assumption (CWA): It counts as counter-evidence all the
conclusions of the rule that do not appear in the KB. How-
ever, under the OWA, conclusions may be true even if they
are not in the KB. Hence, AMIE proposes an alternative
confidence metric, as we shall see.

4. THE AMIE SYSTEM

4.1 Functions
A function is a relation that maps each subject to at most

one object, such as place of birth. A relation is an inverse
function, if its inverse is a function. Due to the noise in Web-
extracted KBs, it is rare to find conceptually functional rela-
tions that comply strictly with these definitions. Therefore,
[18] defines a functionality score for relations:

fun(r) :=
#x : ∃y : r(x, y)

#(x, y) : r(x, y)



The functionality is 1 for functional relations, and decreases
towards 0 for less functional relations. The inverse function-
ality of a relation is defined as the functionality of its inverse
relation ifun(r) := fun(r−1). AMIE assumes that rela-
tions are more functional than inverse functional (fun(r) ≥
ifun(r)). If it is not the case, a relation r can always be
replaced by its inverse relation r−1. This is called the FUN-
property of KBs in [10].

4.2 PCA Confidence
The Partial Completeness Assumption (PCA) [10] assumes

that if a KB knows some r-values for an entity, then it knows
all its r values for that entity.4 For example, if the KB knows
4 official languages for Switzerland, then the PCA assumes
than Switzerland has no further official languages. If a rule
predicts a new language, the PCA labels the conclusion as
false. If, in constrast no official language for Switzerland is
known, then the PCA will not assume anything, i.e., it will
label any conclusion for the language of Switzerland as un-
known. The CWA, in contrast, would label both conclusions
as false.

This means that the PCA admits that the KB can be
incomplete. Therefore, it is more suitable for rule mining
under the OWA. Under the PCA, we compute the confidence
of a rule as follows:

pcaconf(r(x, y)⇐ B) :=
supp(r(x, y)⇐ B)

#(x, y) : ∃z1, . . . , zk, y′ : r(x, y′) ∧B

The PCA confidence normalizes the support of the rule
over the number of positive cases and the cases that the PCA
assumes to be false. Experiments [10] suggest that the PCA
confidence is more effective than the standard confidence at
identifying productive rules, i.e., rules that produce many
correct conclusions beyond the ones known to the KB.

4.3 Algorithm
The AMIE algorithm explores the search space of closed

Horn rules by a breadth-first search. The algorithm starts
with a queue that contains only the empty rule (with no head
and no body). In each iteration, the algorithm dequeues a
rule and applies one of the following mining operators:

• Add Dangling Atom (OD)
This operator adds a new atom to a rule. The new
atom uses a fresh variable for one of its two arguments.
The other argument (variable or entity) is shared with
the rule, i.e., it occurs in some other atom of the rule.

• Add Instantiated Atom (OI)
This operator adds a new atom that uses an entity for
one of its arguments, and shares the other argument
(variable or entity) with the rule.

• Add Closing Atom (OC)
This operator adds a new atom that shares both of its
arguments with the rule.

The new, refined, rules are then added to the queue. This
process is run in multiple threads until the queue is empty.
AMIE relies on a tailored in-memory triple store, which is

4The PCA was later used as the local closed world assump-
tion in [7].

optimized for the kind of queries that the operators gener-
ate. This component in combination with the pruning (s.b.)
allows AMIE to mine closed Horn rules on KBs three orders
of magnitude faster than other state of the art systems such
as WARMR [12] or ALEPH [15].

4.4 Pruning
If run naively, the AMIE algorithm would enumerate the

entire search space. Thus, it would not finish in reasonable
time. Therefore, AMIE limits the search as follows:

1. By default, AMIE mines rules only up to 3 atoms.
The user can choose to increase this threshold, but
experiments [10] show that longer rules capture only
very obscure correlations in practice.

2. If a rule has head coverage below 1%, AMIE considers
it too insignificant, and filters it out. However, the user
can also provide a different threshold value or prune
on absolute support instead.

Since support, head coverage, and the length of the rule are
monotonic metrics, AMIE can safely abandon any further
refinement of such rules as well.

In addition, AMIE uses the following pruning techniques:

1. If the rule is closed and has a PCA confidence of 1.0,
then no refinement can make the rule better, because
confidence cannot increase and support can only de-
crease. Hence, the rule is output and removed from
the queue. We call these rules perfect rules.

2. If the new rule has a lower confidence than the rule
that it is derived from, then the rule is just silently
enqueued for further refinement, but not output. This
is because it will have lower confidence and lower sup-
port than the previous rule. This technique is called
the skyline technique and was designed to avoid over-
specifications of the same logical rule.

3. If the maximum permitted length of a rule is n, then
AMIE will not apply the operator OD at length n− 1.
This is because the operator adds a new variable, and
thus the rule cannot be closed within the limit of n
atoms. This technique is called the lookahead.

4. When AMIE adds a new instantiated atom, it will ex-
clude atoms where the variable of this atom can bind to
only one entity in the KB. This is because these cases
induce a quasi-binding of the free variable, meaning
that there is a shorter equivalent rule. For example,
it does not make sense to add the atom hasOfficial-
Language(x,Romansh) to a rule, because x can bind
only to Switzerland. Thus, there is a shorter equiva-
lent rule, namely the one where the atom is not added
and x is replaced by Switzerland.

5. DEMO

5.1 Overview
Our demo lets the user understand the heuristics that gov-

ern AMIE’s search strategy by allowing the user to navigate
through the search space together with AMIE. For this pur-
pose, our demo shows the rule construction process, starting
from the empty rule. At each step, the user can add a new



Figure 1: Mining a closed Horn rule

atom r(x, y). This involves two steps: (1) choosing the rela-
tion r and (2) choosing the arguments x, y. The second step
offers various permutations of arguments: Each argument
can be a variable (either known or fresh) or an entity (cho-
sen from the set of entities that lead to the highest support).
For instance, imagine the user wants to follow the path to
mine the rule

livesIn(a, b)⇐ isMarriedTo(a, f) ∧ livesIn(f, b)

The demo starts with the empty rule ”... ⇐ ...” and asks
the user to select a relation for the head atom. The system
shows as choices a list of relations ranked by size. Once the
user picks a relation (i.e., livesIn in our example), the system
applies the mining operators on the empty rule and reports
all the refinements that have livesIn as relation, ranked by
support. This includes, for example, the atom lives(a, b)
from the operator OD, or the atom livesIn(a, California)
from the operator OI . When applied the first time, the
operator OI binds always the least functional variable of
relations. In our example, it is more reasonable to predict
the place of residence of a person, that all the people that
live in a place (Section 4.2). Once the arguments are fixed,
the atom is appended to the rule, and the user can choose
the next atom. In the example, the user would select the
relation isMarriedTo, followed by the arguments a, b, and
then in a new atom the relation livesIn (Figure 1). The user
can also, at any point, decide to backtrack and to remove
the last atom from the rule in order to explore a different
path in the search space.

At each step in the process, the user has complete freedom
to choose his options. However, the system also shows the
metrics and pruning strategies that AMIE would apply. Our
demo shows for every possible choice of atoms the support,
the head coverage, the standard confidence, and the PCA
confidence that this atom would achieve. Thus, the user
can see which choice achieves the best metrics, and why –
much like AMIE does during the mining process. For illus-
tration, we also show positive examples, negative examples,
and negative examples under the PCA for the new rule.

5.2 Implementation
Our demo is implemented as a client-server application

that lets the user drive the AMIE algorithm step by step.
We use the YAGO ontology [19] as KB. In order to guaran-
tee reasonable response times in the interactive client-server
setting, we created a sample of YAGO following the same
procedure as in [10]: We took 10K random seed entities,
and collected all the facts within a range of 3 hops from
the seed entities, producing a sample of 35K facts. The
server consists of a Java servlet that serves as interface to
the AMIE codebase, namely the mining operators described
in Section 4.3 and the in-memory triple store. The KB is
loaded into memory only once when the servlet is initialized
in the servlets container. The client side is a lightweight
user-interface written in Javascript and HTML.

For the AMIE algorithm, it does not matter whether an
unknown person or President Obama is a counter-example
for a rule. For the user, in contrast, it is more illustrative to
show prominent entities rather than unknown ones. Hence,
we computed a relevance score for each entity e as:

relevance(e) := log(wikilength(e))× (incoming(e) + 1)

Here, wikilength(e) is the length of the Wikipedia article
of the entity (in bytes), and incoming(e) is the number of
Wikipedia articles linking to the article of e. Both numbers
can be easily obtained from YAGO. We add 1 in the second
term to guarantee that the score is a positive number. The
relevance of a fact r(x, y) is defined as the sum of the rel-
evance scores of its arguments. This score is used to rank
facts when displaying examples for rules, so that facts about
prominent entities are preferred.

6. CONCLUSION
Rule Mining is a fascinating process, in which nuggets of

insightful correlations are mined on millions of facts. Our
demo allows the user to join AMIE in this process on a
sample KB, and to discover how the search space can be
cut down to a tractable size. Our demo is fully imple-
mented, and available online at http://luisgalarraga.de/
amie-demo/. Through the interaction with the demo partic-
ipants, we hope not just to shed light on the inner workings
of AMIE, but also to develop ideas for new pruning strate-
gies together with the participants.

http://luisgalarraga.de/amie-demo/
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