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1 Abstract12

Crop diseases and pests constitute significant causes of yield losses for crops.13

To limit the harm incurred by those events, farmers resort to plant protec-14

tion products. Such products are known to have adverse effects both on the15
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environment and on human health. Agronomists make continuous efforts16

to limit the usage of plant protection products to situations where those17

products are strictly necessary. To determine such situations, agronomists18

and policy-makers often rely on decision support tools to model and predict19

the dynamics of plant diseases. Decision support tools are based either on20

mechanistic models or on statistical approaches learned from large datasets of21

biotic (e.g., disease incidence, plant phenological stage) and abiotic (meteo-22

rological, soil characteristics) observations in cultures. The surge of powerful23

machine learning (ML) methods in the last decade makes such approaches a24

natural pathway to model the dynamics of plant diseases.25

Machine learning models can reveal the factors that contribute the most to26

disease and pests outbreaks, provided that those models are simple enough27

for human inspection. Simplicity, however, may come at the price of lower28

prediction performances when compared to more complex models.29

In this paper, we offer a deep look at the performance of ML models of differ-30

ent complexity when used on two use cases of crop disease prediction: downy31

mildew in the grapevine, and Cercospora leaf spot in the sugar beet.32

We compare model accuracy and complexity using a year-based cross-validation33

approach. Our results suggest that interannual meteorological variations are34

a very important factor in plant disease prediction. Moreover, in line with the35

observations of the research community in interpretable ML, model complex-36
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ity stands in clear trade-off with accuracy. This makes models of intermediate37

complexity appealing for predicting the dynamics of crop diseases as they38

can provide explicit insights about the rationale of their predictions.39

2 Introduction40

Crop protection against plant diseases is crucial to secure crop yields. To41

this end, farmers and agronomists make use of plant protection products,42

i.e., pesticides, to combat plant diseases and pests in cultures. It is well-43

known, however, that the usage of such products has multiple downsides.44

Besides their impact on farmers’ health, and their polluting effect on the en-45

vironment, such products incur an economic cost on both farmers and con-46

sumers, not to mention their role in the development of pesticide-resistant47

breeds [Heap, 2014] and the indirect contamination in other stages of the48

food supply chain [Parsons et al., 2021]. It follows that minimizing the us-49

age of pesticides in cultures incurs countless benefits. One way to reduce our50

dependence on such products is to adapt their usage to local factors [Chen,51

2019] such as the climate/weather, the soil type, or the farming practices.52

This can be achieved through the deployment of models that can predict dis-53

ease incidence or risk of outbreak. Such tools help farmers and agronomists54

avoid the usage of pesticides when they are not necessary.55

There have been multiple efforts to model and predict the risk of outbreak56
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and the incidence of plant diseases in cultures [Edwards-Jones, 1993]. Exist-57

ing methods can be categorized into two families. On the one hand, mecha-58

nistic models are constructed based on prior observations and knowledge of59

the diseases or pests’ life cycles. These models require extensive agronomical60

studies and experts intervention, and were the preferred approach to model61

plant diseases for long time. An inflexion point arose with the emergence62

of large amounts of data including past observations of diseases in cultures63

– as human annotations or as images –, but also information about abiotic64

factors such as the characteristics of the soil and meteorological data. This65

data abundance has made statistical models, in particular machine learning66

models, more appealing in the last decade, and has nurtured their steady67

increase in accuracy and sophistication.68

ML models used in crop protection are usually trained for a single type of69

crop and disease. This is due to the fact that different crops develop in70

different ways, and so do diseases and pests. It is also known that models71

are typically trained for a given region, and are less accurate when used on72

data from other regions [Velasquez-Camacho et al., 2023]. Some approaches73

rely on image classification with deep learning [van Klompenburg et al.,74

2020, Ip et al., 2018, Liakos et al., 2018, van Evert et al., 2017] for disease75

diagnosis. Other models are designed to predict or forecast the incidence76

of a disease at a particular period of the year, e.g., before harvest, based77

on human annotations. This forecast can take the form of an incidence78
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prediction (regression) or a risk of outbreak (classification) [Chen, 2019]. In79

those cases the models’ outcomes help agronomists decide whether to apply80

or not plant protection products in their cultures.81

But besides forecasting the incidence of crop diseases, ML models can also82

help agronomists understand which factors contribute to the development83

of those diseases. This is possible, however, if the model is simple and84

interpretable enough to be understood by humans. Examples of interpretable85

ML models are linear functions and shallow decision trees.86

A simple, yet effective proxy to model interpretability is model complex-87

ity [Galárraga et al., 2021]. Complexity is usually measured as the number88

of relevant parameters that play a role in the model’s answers, and it is89

known to be correlated with interpretability. To see why, it suffices to com-90

pare the effort of interpreting a linear model with 5 variables versus a linear91

model with 300 variables.92

While complex models such as neural networks or gradient boosting tend93

to be less interpretable than transparent simple methods such as linear re-94

gression or shallow trees, in some cases this complexity pays off in terms95

of prediction performance [Mori and Uchihira, 2019, Johansson et al., 2011,96

Galárraga et al., 2021]1. This trade-off between complexity and prediction97

accuracy can happen because more parameters or weaker assumptions en-98

1As shown by Rudin [2019], Bell et al. [2022], the accuracy-interpretability trade-off
is not necessarily observed in every application domain and depends on multiple factors
such as the quality of the data.
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dow models with more expressiveness and flexibility to capture subtle inter-99

actions. Simpler models make assumptions that may not encapsulate the100

complexity of real data. For example linear models assume there exists a101

linear relationship between the input features and the target variable i.e.,102

the variable we want to model or predict. This, for instance, excludes any103

potential interactions between the input features as predictors for the target104

variable. Between complex approaches and simple models lie pattern-based105

models [Galárraga et al., 2021, Dong and Taslimitehrani, 2015] that strike an106

interesting trade-off because they remain relatively simple white boxes that107

exhibit higher predictive power than linear regression or decision trees.108

Existing works that use ML methods for crop protection have paid little109

attention to the potential needs for interpretability and the complexity-110

interpretability trade-off [Fenu and Malloci, 2021, Ip et al., 2018, van Evert111

et al., 2017]. We therefore contribute to the state of the art by studying112

this trade-off in the context of crop protection. We train different popular113

machine learning models of varied complexity for two typical crop protec-114

tion tasks: (i) disease incidence prediction, and prediction of the symptoms115

appearance date. We predict these target variables for the downy mildew116

in grapevine cultures, and for the Cercospora leaf spot in sugar beet crops,117

both in France. In both cases we resort to biotic (e.g., past disease inci-118

dences) and abiotic (e.g., metereological data) predictors. Our tasks are119

classical regression problems, therefore the studied models include (i) black-120
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box ensemble methods such as random forests and gradient boosting trees;121

(ii) white boxes such as linear regression; and (iii) HiPaR [Galárraga et al.,122

2021], a pattern-based regression method of intermediate complexity. Our123

experiments confirm a clear complexity-accuracy trade-off in our use cases,124

and also show different techniques to distill agronomical insights from both125

white- and black-box ML models. Our results suggest that despite the dif-126

ference in prediction accuracy and model architecture, the models agree on127

some common insights. Moreover, interannual effects play a very impor-128

tant role, which makes very difficult to have a single model that can predict129

disease incidence for any arbitrary year.130

Section 3 describes the datasets used for our study, the methods trained on131

those datasets as well as their performance. This is followed by a discussion of132

the different agronomical findings we extracted from the trained ML models133

in Section 4. Section 5 concludes the paper with avenues for future research134

in the prediction of disease incidence in cultures.135

3 Material and Methods136

We now describe the agronomical datasets used in our study as well as the137

machine learning models trained on those datasets.138
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3.1 Data139

Our study case builds upon four datasets covering two major plant diseases140

observed in French cultures: Grape downy mildew and Sugar beet Cercospo-141

ria.142

3.1.1 Sugar beet Cercosporia epidemiologic data143

Sugar beet Cercosporia (SBC) incidences were observed in several vineyards144

located in France by different extension services, including the ITB (Insti-145

tut Technique de la Betterave). The experimental observations have been146

collected from 2009 to 2020 in different regions in France.147

For each monitored site, a specific part of the area, further referred to as the148

“plot”, was observed throughout a specific year. Weekly visual inspections149

were performed on leaves covering one hundred plants in order to assess dis-150

ease incidence. The incidence was calculated as the proportion of sugar beet151

leaves displaying symptoms of Cercosporia leaf spot (Cercospora beticola).152

Weekly inspections were conducted in each plot from leaf emergence (which153

happens in mid-May) until harvest (after mid-September). The collected154

dataset adds up to 1235 individual plots. We highlight that no plot was155

observed every year, and that conversely, not all plots can be monitored in156

a single year.157

For each plot, we define the date of SBC onset (yearly symptoms apparitions158
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date) as the first day in which the proportion of infected leaf exceeded 10%.159

The end of season incidence for SBC was defined as the maximum incidence160

for the period going from the 25th of August to the 15th of September.161

3.1.2 Grape downy mildew epidemiologic data162

Grape downy mildew (GDM) incidence were observed in several vineyards163

located in France by different wine extension services including the IFV164

(Institut Français de la Vigne et du Vin). The data have been collected from165

2010 to 2017.166

For each considered plot, an untreated row of vines was observed. Each167

untreated row was surrounded by two other untreated rows to ensure that168

they were not unintentionally sprayed with fungicides. In the monitored169

central row, weekly visual inspections were performed on leaves in order to170

measure disease incidence. The incidence was calculated as the proportion171

of vine leaves displaying downy mildew symptoms caused by Plasmopara172

viticola. Weekly inspections were conducted in each vineyard from budburst173

(early March) until at least bunch closing (mid-late July) or stopped when174

the incidence was close to 100%. The observations consist of around 9407175

weekly datapoints corresponding to 713 plots.176

For each plot, date of GDM onset (yearly symptoms apparitions date) was de-177

fined as the first week in which the proportion of infected vines leaf exceeded178

1%. The end of season incidence for GDM was defined as the maximum179
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incidence for each plot.180

3.1.3 Meteorological data181

Meteorological variables were provided by the SAFRAN weather database182

constructed and maintained by the French national meteorological service183

(Météo-France). SAFRAN organizes the French territory into a grid of size184

8×8 Km and stores meteorological data for each cell in the grid [Quintana-185

Seguí et al., 2008]. Daily observations on humidity, mean temperature, wind,186

amount of rainfall, and solar radiation were used to compute different mete-187

orological variables for both diseases.188

For SBC, each meteorological variable covers a period of half a month (15189

days) from January to June. Features in the dataset follow a given conven-190

tion. The first part describes the temporal characteristics of the feature with191

the first three letters of the corresponding month, followed by an ‘A’ for the192

first half of a month or a ‘B’ for the second half. The second part describes193

the climatic nature of the feature and how this information was calculated.194

The feature suffixes are described in Table 1. For example, the variable195

named JanA-ndRHm60 corresponds to the number of days (nd) such that196

the relative humidity was higher than 60 percent (RHm60) during the first197

half (A) of January (Jan).198
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Name Feature
RHmX Mean Relative Humidity lower than X (X = {60, 65, 80, 90})
H87 Humidity index equals to 87

H87Y Humidity index equals to 87 for at least (Y = {6, 10}) hours
TmX Mean Temperature higher than (X = {15, 20})

TmXTinfYZ Mean Temperature higher than (X = {15}) but lower than (Y = {10})
for at least (Z = {3}) hours

TbloX Number of days where temperatures were defined as inhibiting
to SBC growth for more than (X = {3,6}) hours.

Table 1: Description of the meterological variables used to model the dy-
namics of the Sugar beet Cercosporia (SBC). Temperatures are considered
as inhibiting below 10°C or above 38°C

For GDM, features either describe meteorological conditions at the date of199

recording or its sum for the four previous weeks before recording. For exam-200

ple, the predictive variable ETP gives us the evapotranspiration at the time201

of recording. ETP-4w is the sum of evapotranspiration for the four previ-202

ous weeks. Two exceptions are the number of rainy and dry days, which are203

counted from the beginning of January. This length of four weeks was chosen204

based on expert insights about the growth speed of downy mildew.205

3.1.4 Four prediction targets206

From both diseases data and associated climatic variables, we finally ob-207

tained 4 data sets corresponding to our 4 prediction targets.208

• Sugar beet Cercosporia (SBC) end of season incidence (% of leaves209

with diseases) with 1235 plots and 367 variables including one cate-210

gorical variable and 366 numeric ones. The categorical feature is the211
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risk-exposure, an indicator defined by agronomists based on their own212

knowledge of each plot’s sensitivity to SBC. The numerical variables213

correspond to the one described in Subsection 3.1.3.214

• Sugar beet Cercosporia (SBC) symptoms appearance date (day number215

of year) with 1235 plots and 367 variables.216

• Grape downy mildew (GDM) end of season incidence (% of sick leaves)217

with 359 plots and 22 variables including two categorical and 20 nu-218

meric.219

• Grape downy mildew (GDM) symptoms appearance date (week num-220

ber of year) with the same 359 plots and 22 variables.221

Thus, the target variables are numerical. We are thus confronted to a re-222

gression problem in all cases.223

3.2 Regression Methods224

We assume that the goal is to predict the values of a real variable, that we225

call the target variable, using observations from another set of variables that226

we call the predictive variables. Examples of target variables are given in227

Subsection 3.1.4. Conversely, the predictive variables constitute the set of228

meteorological indicators (see Table 1). This scenario constitutes a classical229

regression problem. We first introduce some notation and then survey the230

most popular regression methods used in crop protection on tabular data.231

12



We extend the discussion with the description of a pattern-aided regression232

method that deals with the complexity-accuracy trade-off introduced in pre-233

vious sections.234

3.2.1 Problem Formulation and Notation235

Let us assume that we count on a set of n target observations represented as236

a column vector y ∈ Rn. Those target observations are associated to a set237

of observations on the predictive variables, organized in a matrix X ∈ Rn×d.238

Each row x⊤
i ∈ Rd in the matrix stores the observed values of the d predictive239

variables associated to a target observation yi. From now on, we denote240

vectors and matrices with names in bold to distinguish them from scalars241

and functions. Moreover, matrices are denoted with capital letters. If a242

predictive variable is categorical, e.g., plant variety, we assume its values243

have been encoded as real numbers, for instance, by resorting to strategies244

such as one-hot encoding or dimensionality reduction.245

The goal of regression analysis is to learn a function f such that y = f(X)+ϵ246

and ϵ is minimal. The function f is a model of the data designed to predict247

the target variable for unseen instances x⊤ ∈ Rd of the predictive variables.248

The term ϵ is the error of the regression model and accounts for potentially249

unobserved predictors of y. The model f is learned on a set of training and250

validation observations.251
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3.2.2 Classical Regression Methods252

Linear Regression. This method assumes that the relation between the253

target variable y and the predictive variables X is linear, that is,254

y = βX′ + ϵ with β = argminβ̂||y −X ′β̂||22 (1)

β = (X⊤X)−1X⊤y, (2)

where X ′ = 1 ⊕ X, i.e., X ′ ∈ Rn×(d+1) and β ∈ Rd+1 are the parameters255

of the model (the operator ⊕ denotes column concatenation), namely the256

linear coefficients associated to the each of the d predictive variables plus257

the intercept coefficient β0. The parameters of the model can be computed258

by minimizing the loss function Ll(β̂) = ||y − X ′β̂||22 with the method of259

ordinary least squares (OLS) as illustrated in Equation 2. Linear models260

are among the most popular regression methods due to their simplicity and261

interpretability. This is because the magnitude of the coefficients tells us ex-262

plicitly how much a predictive variable contributes to the model’s prediction.263

On the downside, the linearity assumption may come at the expense of low264

prediction accuracy, which is why linear models are often used as baseline265

methods.266
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Lasso. To reduce the risk of over-fitting in linear regression, Lasso [Tibshi-267

rani, 1994] proposes an L1-regularization of the loss function, which favors268

models with few non-zero coefficients. This is achieved by minimizing the269

following objective:270

β = argminβ̂ Ll(β̂) + θ||β̂||1. (3)

By minimizing the L1-norm of β we can obtain sparse models that can not271

only prevent or mitigate over-fitting, but that are less complex and therefore272

easier to inspect by humans. The penalization term θ is a hyper-parameter273

that controls the importance of the sparsity constraint in the optimization274

process. The Lasso method selects the set of parameters β̂ that achieves the275

highest performance in cross-validation.276

Decision/Regression Trees. A decision tree is a binary tree where each277

internal node evaluates a Boolean condition on a predictive variable. The278

children of a node are decision trees associated to an evaluation outcome,279

i.e., true or false. Leaves (also called final nodes) are linked to a prediction of280

the model for the target variable. When the target variable is numerical, we281

talk about regression trees [Kramer, 1996]. Regression trees are white-box282

models because the model’s prediction on a particular instance x⊤ ∈ Rd can283

be explained by following the path from the root to the leaf node that pre-284

dicts the outcome for x⊤. This makes regression trees interpretable models,285
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provided that the tree is not too deep for human inspection. Despite their286

interpretability, decision trees are prone to over-fitting if not properly param-287

eterized, and are usually outclassed in terms of predictive performance by288

ensemble methods such as random forests and gradient boosting trees.289

Random Forests. Random Forests are ensembles of weak decision tree290

estimators [Breiman, 2001]. Predictions are computed by averaging the pre-291

dictions of each tree in the ensemble. The weak estimators are learned by292

applying bagging and random feature selection. In bagging, each tree is293

learned by sampling from X and y uniformly and with replacement. More-294

over, the trees are trained on different subsets of the features, which gives295

each tree a “partial” but “unique” view of the data. These techniques make296

random forests very robust to over-fitting, and a very popular choice for crop297

protection [Elavarasan et al., 2018]. On the downside, random forests are298

not interpretable because the aggregation step makes it very difficult to trace299

the outcome of the model back to the input features – without resorting to300

post-hoc inspection approaches as we will show later.301

Gradient Boosting. Another popular ensemble method is gradient boost-302

ing [Mason et al., 1999]. Like random forests, the basic principle is to303

compute a robust prediction from the predictions of a set of weak learn-304

ers. Different from random forests, learning is based on an additive model305

where each learner hm is fit on the error of the previous learner hm−1 –306
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technically on the negative gradient of the minimized loss function. Put dif-307

ferently, each new learner is trained to correct the errors of the previous one:308

fm(X) = fm−1(X) + γmhm(X) (4)
γi = L(y, fm(X)) (5)

309

310

The individual learners can be of any type, however decision trees are a311

common choice [Mason et al., 1999]. Gradient boosting models are very312

robust to over-fitting, and like random forests, behave pretty much like black313

boxes.314

3.2.3 Hierarchical Pattern-aided Regression (HiPaR)315

Pattern-aided Regression. Pattern-based regression models consist of a316

set of local models trained on regions of the data. Those regions are charac-317

terized by interpretable patterns, namely logical conditions on the predictive318

variables, e.g., wind-speed > 50. The local models are usually interpretable319

functions, e.g., linear functions, that capture local relationships between the320

target and the predictive variables that cannot be observed at the “global321

level”. As shown in the literature [Galárraga et al., 2021, Dong and Taslim-322

itehrani, 2015], these methods exhibit higher predictive performance than lin-323

ear regression at the price of a manageable increase in complexity. Examples324

of pattern-aided regression methods include piecewise regression [McGee325

and Carleton, 1970], regression trees [Breiman, 2001], model trees [Wang326
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and Witten, 1997]2, Contrast pattern-aided regression (CPXR) [Dong and327

Taslimitehrani, 2015], and HiPaR [Galárraga et al., 2021]. We elaborate on328

the latter method in the following.329

HiPaR. Hierarchical Pattern-aided Regression Galárraga et al. [2021] es-330

timates the values of the target variable via a compact set of local hybrid331

rules on the predictive variables. These rules have the form:332

p = C1 ∧ . . . Cm ⇒ y = fp(Xp). (6)

In this expression, the pattern p is a conjunction of conditions on the pre-333

dictive variables such as wind-speed > 50∧ humidity > 30. Those conditions334

define subsets or regions of the data Xp ⊂ X. A hybrid rule is associated335

to a local linear model fp that has been trained on Xp, and that refines the336

predictions of a global linear model f trained on X. The model f , called337

the default model, is used to make predictions whenever none of the local338

hybrid rules applies. After having learned the default model, HiPaR mines339

a compact set of hybrid rules by means of two phases:340

1. During the enumeration phase, the learning algorithm explores the341

space of patterns p in a depth-first hierarchical fashion. When a pattern342

p is visited, HiPaR learns a hybrid rule of the form p ⇒ y = fp(Xp)343

2These are regression trees such that some nodes, usually the leaves, are linear models
on the target variable
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on Xp – the set of observations that satisfy p –, and then explores344

the sub-regions of Xp. Since the search space is exponential in the345

number of features, a set of pruning strategies reduces it by avoiding346

the exploration of unpromising sub-regions; for example a minimum347

support threshold is enforced to avoid sub-regions with very few points.348

2. Despite the pruning strategies carried out during the enumeration349

stage, the set of resulting hybrid rules can still be very large. For350

this reason, HiPaR carries out a selection phase that retains a small351

set of hybrid rules with good performance and minimal overlap. This352

phase is governed by two hyper-parameters: the support and the over-353

lap bias. They determine, respectively, to which extent very specific354

rules are preferred over general rules, and how much overlap between355

the selected rules is allowed.356

Contrary to tree-based models, HiPaR’s hybrid rules are extracted from a357

hierarchy with potentially overlapping regions as depicted in Figure 1. When358

a new observation x⊤ satisfies more than one hybrid rule, the final prediction359

is the weighted average of the predictions of the individual rules. The weight360

is inversely proportional to the rule’s error on a validation subset. This361

makes HiPaR models more robust than linear functions and regression trees,362

but significantly more complex. That said, HiPaR hybrid rules remain white-363

box models that allow for simple inspection of the most important predictive364

variables in the prediction for an observation x⊤ ∈ Rd.365
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Figure 1: A depiction of the regions explored by HiPaR for two steps of the
enumeration phase. Each rectangle defines a region described by a pattern,
on which HiPaR learns a local regression model. Regions can overlap; an
example are the regions stage = “b. veraison” and variety = “Grenache”.
Once a region is explored, e.g., stage = “b. veraison”, HiPaR will look at its
sub-regions in a depth-first-search manner (figure on the right).

Table 2 summarizes the strengths and weakness of the methods discussed in366

this section.367

Models Characteristics Advantages Disadvantages
Lasso Sparse linear regression Simple/interpretable Baseline method
HiPaR Pattern-based Medium-complexity High computation time

Random
Forests Ensemble-, tree-based

High accuracy,
Built-in feature

importance values
Black-box model

Gradient
Boosting Ensemble-based High accuracy Black-box model

Table 2: Overview of the machine learning methods used in this study.

3.3 Training and testing procedures368

3.3.1 Optimization and performance evaluation369

One of the challenges of evaluating different machine learning models is to370

select the best configuration so that comparisons are fair and meaningful. In371
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an agronomical scenario the important interannual differences make standard372

cross-validation unadapted. Therefore, we use cross-validation by year, that373

is, each year is used as a fold in the process. The data from a given year is374

separated from the rest of the dataset for testing, whereas the observations375

from remaining years are used to train the algorithm. That way we are376

able to estimate the actual capacity of the algorithms to predict for unseen377

scenarios, e.g., for a new year.378

Inside each fold, we select the best model by optimizing the hyper-parameters379

of each method. HiPaR’s enumeration phase can take long for very low380

support thresholds. Therefore we run the enumeration phase with a support381

threshold of 30% the size of the dataset once – i.e., regions covering fewer382

points are not explored –, and we then optimize the hyper-parameters of the383

selection phase to pick the most performing set of rules.384

We use the coefficient of determination (R²) as prediction performance met-385

ric. The R² score is defined as the proportion of the variance in the predicted386

target variable explained by the independent variables. Contrary to the root387

mean square error (RMSE), R² values can be compared among different pre-388

diction tasks (e.g., disease incidence and symptoms appearance). Indeed, the389

closer to 1 the R² is, the better the model fits the data. Values close to zero390

denote a performance comparable to predicting the mean of the target vari-391

able, whereas negative scores mean the model is worse than a mean-based392

simple predictor.393
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3.3.2 Complexity measure394

To measure the complexity of the studied machine learning models, we resort395

to the complexity measure for pattern-based models proposed by Galárraga396

et al. [2021] that counts the number of elements in the model. An element397

is either a non-zero coefficient or a condition on a predicting variable. We398

remark that this measure is also applicable to tree-based methods such as399

random forests or gradient boosting trees because each node of each tree of400

the ensemble defines either a condition on one attribute or a linear model401

– for simple regression trees this linear model is a single constant. The402

number of elements can be very large when the ensemble consists of many403

trees, which points out the complexity of such models.404

Under this principle, a Lasso model is generally less complex than a HiPaR405

model with several rules. This is the case because for Lasso we only need to406

count the non-zero coefficients in the linear function, whereas for HiPaR we407

must consider both the number of conditions and the coefficients of each of408

the local models.409

If we consider the following regression tree T :410
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x1 > 10

x2 < 5.5

150 300

50

411

Then its complexity c(T ) is 5. Likewise, if we consider the rule R :412

C1 ∧ C2 ∧ C3 ∧ C4 ⇒ y = 3x1 + 4x2 − 4x3 + 8. (7)

then its complexity c(R) is 8 because the rule consists of 4 conditions and 4413

linear coefficients.414

3.4 Results415

3.4.1 Performance-Complexity Trade-off416

Figure 2 depicts the trade-off between the complexity and accuracy of the417

studied machine learning methods. On the x-axis we show the complexity of418

the models (in log scale). The y-axis corresponds to the median R² coefficient419

of each model in cross-validation. Models located in the top-left part of420

the space strike a better accuracy-complexity trade-off as they predict the421

data more accurately with fewer elements. As suggested by Galárraga et al.422

[2021], more complex models such as random forests or gradient boosting423
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trees achieve the best performance at the price of high complexity. Lasso424

regression, our baseline, is often the least accurate model. HiPaR positions425

itself in between linear regression and ensemble methods striking a very426

interesting trade-off for 3 of the 4 prediction tasks.427

We highlight that accuracy varies drastically across tasks: All models strug-428

gle when it comes to predicting the date of apparition of downy mildew in429

vine cultures, as the median R² for all methods is negative (bottom-right fig-430

ure). We observe R² scores between 0.12 and 0.26 for the final downy-mildew431

incidence (on the bottom-left) with gradient boosting as the winner. HiPaR432

lies close to Lasso, which means that it did not find many regression rules433

improving performances marginally over the baseline. The performance dif-434

ferent between the two target variables in the downy-mildew dataset could435

be explained by the relatively low number of observations for the date of436

symptoms apparition – 359 versus 700 observations for the end-of-season437

incidence.438

The reach of the aggregated variables is relatively limited too. By this we439

mean most of these variables over a range of 4 weeks before data collec-440

tion. While this confirms the trade-off, the low R² makes this dataset less441

interesting to study further.442

The results for the sugar beet Cercospora are more encouraging. The R²443

median scores for the apparition date vary between 0.13 and 0.18 with gra-444
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dient boosting leading the rank and followed by HiPaR (top-right figure).445

For the prediction of the end-of-season incidence performance ranges from446

0.05 to 0.35. In this use case HiPaR outperforms all methods and finds a447

large number of rules that improve performance significantly when compared448

to a single linear model, and without incurring as much complexity as the449

ensemble methods.450
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Figure 2: R² of different machine learning models compared against their
complexity. The x-axis correspond to the number of elements that com-
pose each model (log scale). The y-axis are the median R² values in cross-
validation. GBR stands for gradient boosting regression, and RFR for ran-
dom forests regression.

26



(a) R² year-to-year cross-validation (b) R² year-to-year distribution

Figure 3: Mildew symptoms apparition date

(a) R² year-to-year cross-validation (b) R² year-to-year distribution

Figure 4: Mildew end of season incidence
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(a) R² year-to-year cross-validation (b) R² year-to-year cross-validation distribu-
tion

Figure 5: Cercosporia symptoms date of apparition

(a) R² year-to-year cross-validation (b) R² year-to-year cross-validation distribu-
tion

Figure 6: Cercosporia end of season incidence

When we look at the performance of the methods per year (Figures fig. 2),451

we notice that performance can vary drastically from one year to another,452

and that both end-of-season incidence and date of apparition are very hard453

to model for some years. This is true for all methods. As a general trend,454

we can observe that Cercospora end of season incidence predictions seem to455

follow a downward trend in performance. The performance variability across456
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folds (Figures fig. 2) for the different methods is comparable and does not457

seem to follow a noticeable pattern.458

Now that we have illustrated the accuracy-complexity trade-off present in our459

use cases, we delve into the knowledge captured by the different methods.460

To do so we analyze the models trained to predict year 2009 for the end-461

of-season incidence of the sugar beet Cercospora, as these models exhibit462

the highest explained variance across all years (R² scores of 0.67 and 0.66463

for gradient boosting trees and random forests, 0.3 for Lasso, and 0.47 for464

HiPaR). For white-box models such as Lasso and HiPaR, we conduct direct465

inspection of the models’ elements. For the complex black-box approaches,466

we resort to classical model inspection techniques and assess whether our467

models agree on the relationships between the predictive variables and the468

target variables.469

3.4.2 Use case: Incidence of the Sugar Beet Cercospora470

In this section we carry out an inspection phase aimed to distill agronomical471

insights from the experimental machine learning models trained to predict472

the incidence of sugar beet Cercospora. These models were trained on all473

years except 2009 and correspond to the most performing cross-validation474

round of our experiments. We resort to classical interpretation techniques475

including feature importance rankings, partial dependence plots, and simple476

rule inspection. The first technique tells us which are the most important477
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variables that play a role in the prediction. PDPs and rule inspection allow478

us to identify threshold effects on the predicting variables, that is, cases479

when the behavior of the target variable varies in a piece-wise manner, i.e.,480

according to thresholds on the predicting variables. Pattern-based regression481

methods such as HiPaR are good at detecting such kind of effects. Moreover,482

such methods allow us to study more fine-grained interactions among the483

predicting variables present in the rules. Our observations set the ground484

for the discussion in Section 4.485

Feature importance. A simple way to interpret the knowledge captured486

by a machine learning model is to construct a feature-importance ranking487

that tell us how much the model’s input variables affect the model’s out-488

put. This ranking can be based on the actual contributions of a variable489

to the answers of a model, e.g., the coefficients of a linear regression, or490

on model-aware scores computed a posteriori for black-box models. In this491

spirit we contrast the feature-importance rankings of Lasso, RFR and GBR492

and depicted them in Figure 7. Lasso’s linear coefficients encode the ac-493

tual contributions of the input features to the answers of the model. They494

are therefore signed. To turn the linear coefficients into importance scores,495

we take their absolute value. Conversely, RFR and GBR are based on tree496

ensembles for which different importance scores have been developed. We497

choose the permutation feature importance method as implemented in the498
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scikit-learn library. This approach estimates the importance of a feature499

by shuffling its values across rows in X. The resulting decrease in accu-500

racy is then used to determine how much the model relies on a feature to501

make predictions – the higher the decrease, the informative the feature is for502

predicting the target variable.503

Figure 7: Parallel coordinates chart comparing feature-importance rankings
for Lasso, random forests, and gradient boosting trees when predicting end-
of-season incidence for the sugar beet Cercospora. For each model we chose
the top-4 most important features. For each model, features below the 4 can
be further down the importance order than what is displayed

As we can see, RFR and GBR yield very similar rankings – their top-4504

variables are the same even though the order is not identical. The variable505

threshold-1 is the most important feature for all three models. This variable506

represents the day in which the first symptoms of Cercospora were detected507

in the culture. Conversely RFR and GBR’s accuracy rely on the risk-zone508

expert-based indicator, which is less important for linear regression. While509

importance scores tells us which information the model is looking at, it510

does not tell whether those features tend to increase or decrease the model’s511

incidence prediction. We can, however, obtain this information by looking512
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at the linear coefficients learned by Lasso.513

Table 3 shows the top-5 most important linear coefficients:514

Variable Coefficient

Threshold-1 -41
AprA-STm10 27.64
JunA-ndW2 -23.39
JunB-STm10 22.24

AprB-ndRHm60 14.73

Table 3: Top-5 important linear coefficients learned by Lasso

We remind the reader the meaning of these variables:515

Threshold-1 : The symptoms apparition date516

AprA-STm10 : The sum of the daily average temperatures of the days517

above 10°C during the first half of April.518

JunB-ndW2 : The number of days in the first half of June such that the519

average wind speed was higher than 2 m/s.520

JulB-STm10 : The sum of the daily average temperatures above 10°C521

during the second half of June.522

AprB-ndRHm60 : The number of days in the second half of April such523

that the relative humidity is higher than 60%.524

Table 3 tells us that the later symptoms appear, the lower the final incidence525

tends to be. The predicted incidence tends to increase when temperature and526

humidity in June and April increase, whereas faster winds seem to hinder527
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the development of Cercospora. This results must be taken with a grain528

of salt given the fact that our baseline Lasso model can explain only 30%529

of the target variable’s variance. That said, these variables are used by530

more accurate models such as RFR and GBR, which means that we are not531

uncorrelated with the target variable.532

Threshold Effects. As stated before, pattern-based regression methods533

are constructed to detect predicting variable threshold effects on the target534

variable. In HiPaR such effects are explicitly stated in the rule conditions.535

To observe whether our models captured such effects we have a deep look536

at the hybrid rules learned by HiPaR on our studied use case, and con-537

trast those thresholds to those learned by the more complex models, namely538

RFR and GBR. Since those models are actually based very large ensembles539

of threshold-based estimators, we observe those threshold effects by means540

of partial dependence plots (PDP). This widely-used inspection technique541

allows us to visualize the behavior of a model’s prediction (y-axis) for the542

different values of a predicting variable (x-axis).543

In our use case, HiPaR learned 3 hybrid rules whose conditions are listed544

in Table 4. As displayed before, thresholds (in red) used in HiPaR’s rules545

roughly fits with changes in the PDPs behaviour. While they not the most546

important features as seen before, it seems to indicate that these thresholds547

are not insignificant (according to RFR and GBR models). We suppose that548
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these features might act as proxies for other features, or simply have an indi-549

rect influence on the final result that is not detectable by using PDPs.550

Rule 1 JunA-ndTm15 < 8, risk-zone=false
Rule 2 JulB-STm10 < 324
Rule 3 MarB-ndW2 ≥ 4, JunB-ndTm15 < 13

Table 4: Conditions of the hybrid rules learned by HiPaR when predicting
the end-of-season incidence of the sugar beet Cercospora.

In other words, HiPaR detected different linear behaviors based on whether551

a plot lies or not within a region deemed risky by experts (risk-zone), or552

whether the number of hot days in June and July are below certain thresholds553

(JunA-ndTm15, JulB-STm10, JunB-ndTm15 ) , or whether the second half of554

March was windy (MarB-ndW2 ). We now construct PDPs for the numerical555

variables on RFR and GBR, which we depict in Figure 8.556
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(a) Number of days where average
temperatures were higher than 15° during
the first half of july

(b) Number of hours where average tempera-
tures were higher than 10° during the second
half of june

(c) Number of days where average wind
speed were higher than 2km/h during the
2nd half of march

(d) Number of days where average temper-
atures were higher than 10° during the 2nd
half of june

Figure 8: Partial Dependence Plots for the predicting variables MarB-ndW4,
JulB-STm10, JunA-ndTm15 and JunB-STm10 on random forests and gradi-
ent boosting trees. The red line represents a threshold learned by HiPaR.

Feature Interactions. Each of the conditions listed in Table 4 is associ-557

ated to a local linear model (learned using Lasso). Those models reveal local558
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interactions between the variables in the conditions and the linear coeffi-559

cients, and are designed to refine the baseline linear (called also the default)560

model learned on the entire dataset. Out of 368 features used as input in561

the models, Lasso selects between 25 and 55. This represents between 6.7%562

and 15% of the available features. Moreover, local models are systematically563

less complex than the default model as Table 5 shows.564

Rule 1 Rule 2 Rule 3 Default Model
Rule 1 25 8 3 6
Rule 2 28 6 16
Rule 3 26 12

Default Model 55

Table 5: Number of common non-zero coefficients of the linear models
learned by HiPaR for the prediction of the end-of-season sugar beet Cer-
cospora.

We can also observe that coefficients overlap between the different hybrid565

rules is low. This means that each local model is relying on different signals566

to make predictions on the end-of-season incidence. Figure 9 depicts the567

intensity and polarity of 16 of those coefficients for both the default and568

local models.569

Figure 9: A color encoding for the linear coefficients of the three hybrid rules
learned by HiPaR. Cells in white □ denote features with a linear coefficient
strictly equal to 0, which means those features aren’t used by the model

36



Our first observation is that the apparition date (threshold-1 ) is consistently570

important across all models – and always correlated negatively with the571

predict incidence. The features risk-zone and JunA-ndW2 (wind speed in572

the first half of June) are used in all models except the first rule because573

these variables appear in the conditional part of this rule (Table 4).574

This rule can be interpreted as follows: Plots with lower disease exposure575

(risk-zone=false) and lower temperatures in the first half of June (JunA-576

ndTm15 < 8), experience an aggravated development of Cercosporia as hu-577

midity in May (MayA-ndRHm60 ), wind speed in March (MarA-ndW4 ), and578

rainfall in February (FebA-SR) increase. Wind during June (JunB-ndW2 )579

is associated to a slow down of the disease.580

The second rule suggests that lower temperatures in July (JulB-STm10 <581

324) make Cercosporia sensitive to wind in January, February, June, and582

July (JanB-ndW2, FebA-ndW2, JunA-ndW2, JulA-ndW2 ). Conversely, a583

wet June (JunA-ndRHm65 ) or a windy March (MarA-ndW4 ) appear as ag-584

gravating factors. A windy July (JulA-ndW4 ), a rainy February (FebA-SR)585

and a hotter April (AprA-STm10 ) have a mitigated effect on the develop-586

ment of Cercosporia.587

The third rule triggers when the month of March is windy (MarB-ndW4588

≥ 4) June is not very hot (JunB-ndTm15 < 13). In that case, higher tem-589

peratures in May (MayB-ndTm20 ) and a wet April (AprB-ndRHm60) are590
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correlated with the growth of Cercosporia growth. Conversely, wind in June591

(JunA-ndW2 ) and July (JulA-ndW4 ) exhibit a negative correlation with592

growth.593

Finally, we observe that the default model combines signals from all the lo-594

cal rules, even though it does not always relies on the same variables. This595

happens because the learning objective of this model must fit the observa-596

tions from all the sub-regions. This translates into selecting variables (such597

as JunB-STm10 ) that explain incidence for all the observations, i.e., at the598

global level, but that have little to no explanation power when limited to599

subsets of the data such as the observations on regions not deemed risky by600

the experts (risk-zone=false).601

4 Discussions602

We structure our discussion along three axes: (a) the complexity-accuracy603

trade-off discussed in Subsection 3.4.1, (b) the implications of complexity604

in interpretability, and (c) the agronomical insights offered by the models605

trained.606

Complexity and Accuracy. Our results go in line with what has been ob-607

served in other works on model complexity [Dong and Taslimitehrani, 2015,608

Galárraga et al., 2021], that is, the tendency of complex models to outper-609

form simple models in terms of prediction accuracy. It is crucial to highlight610
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though, that such a trend holds under the assumption that the models have611

been properly parameterized and trained. For instance, a complex model612

trained on very little data will surely over-fit that data specially if there613

are as many or more parameters than data points. Conversely if the data614

adheres to the learning hypothesis of a simple model, e.g., linearity, such615

model will surely shine in terms of performance regardless of its complexity.616

Finally, even if a model was trained under a reasonable learning hypothesis,617

testing it on data that diverges from the training distribution will result in618

unsatisfactory prediction performance. We can observe such a phenomenon619

for the models tested on years 2013 and 2015 for the prediction of both620

the incidence and the date of apparition in both cultures. The observations621

collected those years are atypical because some of the predicting variables622

exhibited measures outside the amplitudes observed other years. This trans-623

lated into a clear under-fitting with the lowest R² scores registered in our624

experiments.625

Interpretability. It is widely-assumed that interpretability and model626

complexity are positively correlated. An illustration of such phenomenon627

can be observed from our use case. Both linear and pattern-based model628

allowed us to distill insights easily and directly from the structures of the629

models themselves. For more complex models such as random forests and630

gradient boosting trees we had to resort to external inspection tools such as631
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the permutation-based accuracy decrease and the partial dependence plots632

(PDPs). Albeit effective, those techniques have limitations. Importance633

scores do not tell us if a variable is positively or negatively correlated with634

the prediction of the model. PDPs can be applied to up to two variables at635

the same time, and make independence assumptions that often do not hold636

on the data. This happens because each point in the curve is the result of637

averaging the model answers over all possible values of the remaining pre-638

dicting variables. Since some combinations of values may be unlikely, PDPs639

must be taken with a grain of salt, specially when the predicting variables640

exhibit some correlation. That said, the PDPs for RFR and GBR in our641

experiments were in concordance with the threshold effects observed when642

using HiPaR. It should be noted that while RFR, GBR, and HiPaR resort643

to thresholds on the predicting variables, the fact they all outperform Lasso644

significantly suggest that threshold effects are a reasonable hypothesis for645

the prediction of plant diseases based on meteorological data.646

Agronomical insights. Based on our use case study on the sugar beet647

Cercospora, we observe that aggregating the meteorological indicators ac-648

cording to the seasons, i.e., winter, spring, and summer can effectively ex-649

plain some of the variation in disease incidences.650

Winter defines the initial conditions: This is the period in which the primary651

inoculum of Cercospora lies in the soil in the form of spores. Spring defines652
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the development period for both crops and the Cercospora. Finally, summer653

encompasses the end of the season, and the moment in which the disease’s654

symptoms, as well as its effects, are obvious.655

As a general rule, dry summers seem to hinder the growth of Cercospora.656

This follows from the importance assigned by the models to the wind and657

temperature factors during June and July. Dry winters also seem to mitigate658

the disease’s spread. Conversely, a hot and humid spring stands as the659

main aggravating factor in Cercospora’s incidence. Thanks to the hybrid660

rules provided by HiPaR, we can obtain more nuanced relationships between661

the incidence and the predicting variables. Rule 2 in Table 4 tells us that662

a mild month of July should make us focus the attention on the initial663

conditions (winter), in particular the wind and the sun exposure and the664

temperature – the two latter factors contributing positively to the presence of665

the primary inoculum. Moreover, a windy spring with mild temperatures in666

June should target our attention towards the development phase (spring) in667

particular towards temperature and humidity, which are positively correlated668

with incidence. In all cases, the date of apparition is the best predictor of the669

final incidence, which means that early detection is the best weapon against670

Cercospora.671

We could not draw insights from the prediction of the downy-mildew on the672

vine because the transparent models explain no more than 14% of the ob-673

served variance for the incidence – the results for the date of apparition are674
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worse. We think this performance gap is due to the fact that the dataset675

relies only on meteorological measures for the four weeks that precede the676

end of the season. In other words, this dataset lack the richness of the me-677

teorological signals available for the sugar beet Cercospora dataset. This678

observation confirms the importance of accurate and complete meteorolog-679

ical measurements when modeling the dynamics of plant diseases. We also680

believe that the studying the impact of the granularity of the meteorological681

indicators in such tasks remains an interesting research avenue.682

5 Conclusions683

In this paper, we have shown the interest of exploring the complexity trade-684

off for machine learning models when applied to predicting the incidence685

of plant diseases. It is accepted that in some applications, complex mod-686

els such as neural networks or gradient boosting generally perform better687

than simpler ones such as linear regression. This comes, however, at the688

cost of interpretability, which (a) is vital when we need to draw insights689

from the prediction model, and (b) fosters transparency, which can in turn690

favor acceptability by users. Post-hoc explanation methods can help us ex-691

tract insights from accurate black-box models, but they are not the only692

solution as we have shown in this work: medium-complexity models based693

on pattern-aided regression can achieve competitive prediction performance694

while remaining simple and interpretable. Moreover, our experiments with695
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post-hoc explainability techniques such as partial dependence plots suggest696

that pattern-aided regression can reveal threshold effects that are also ex-697

ploited by the more accurate black-box ensemble methods. Using those mod-698

els, we have also shown that medium-complexity methods are well suited to699

extract more pertinent information compared to simpler models. Likewise700

medium-complexity models are easier to interpret compared to more com-701

plex methods. This shows the utility of pattern-aided regression and makes702

it appealing for crop prediction.Since there is a direct correlation between703

interpretability and acceptability, evaluating the complexity of a model is704

not trivial and should be taken into account. This aspect has been already705

addressed from the angle of learning complexity [Kearns, 1990] or from the706

perspective of data complexity [Dwivedi et al., 2020], but rarely in terms707

of the complexity of the resulting model. Finally, our study suggests that708

the meteorological inter-annual variations make disease incidence prediction709

very challenging, and that predicting disease incidence for any year requires710

more research as well as more historical (quality) data.711

In the future we envision to study whether increasing the temporal and712

spatial granularity of the meteorological attributes can help us improve the713

quality of our predictions. An interesting research avenue could be to apply714

representation learning techniques in order to learn novel and useful mete-715

orological indicators that predict disease incidence more accurately. Given716

the inter-annual variations of weather patterns, future approaches should be717
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able to categorize prediction models based on the meteorological profile of the718

data used to train them. We believe that unsupervised learning techniques719

could be adapted in that regard. Such approaches may be even necessary in720

the light of a climate that will keep changing in the upcoming years.721
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